Symmetry perception in the blind

Zaira Cattaneo a,⁎, Micaela Fantino b, Juha Silvanto c, Carla Tinti d, Alvaro Pascual-Leone e, Tomaso Vecchi b

a Department of Psychology, University of Milano-Bicocca, Milano, Italy
b Department of Psychology, University of Pavia, Pavia, Italy
c Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland
d Department of Psychology, University of Torino, Torino, Italy
e Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA

A R T I C L E I N F O

Article history:
Received 5 January 2010
Received in revised form 12 March 2010
Accepted 1 April 2010
Available online 5 May 2010

PsycINFO classification:
2320 Sensory Perception
2330 Motor Processes
2340 Cognitive Processes
2343 Learning & Memory

Keywords:
Bilateral mirror symmetry
Blindness
Haptic
Short-term memory

A B S T R A C T

Bilateral mirror symmetry, especially vertical symmetry, is a powerful phenomenon in spatial organization of visual shapes. However, the causes of vertical symmetry salience in visual perception are not completely clear. Here we investigated whether the perceptual salience of vertical symmetry depends on visual experience by testing a group of congenitally blind individuals in a memory task in which either horizontal or vertical symmetry was used as an incidental feature. Both blind and sighted subjects remembered more abstract configurations that were symmetrical compared to those that were not. This suggests that the perceptual salience of the vertical dimension is visually based.

1. Introduction

Symmetry is a powerful principle in spatial representation of visual shapes (e.g., Royer, 1981). Humans – already in infancy – have an extraordinary capacity to detect bilateral symmetric patterns (where one half of a pattern is a mirror reflection of the other half), especially those symmetrical along the vertical axis (e.g., Pashler, 1990; Wagemans, 1997; Wenderoth, 1994). The processes that give rise to the perceptual salience of symmetry are not well known. It has been argued that symmetry salience might represent a by-product of the need to recognize objects irrespective of their position and orientation in the visual field (Enquist & Arak, 1994). Indeed, symmetry facilitates figure/ground segregation (Palmer, 1991) and it plays a crucial role in computational models of object representation and recognition (e.g., Biederman, 1987). Others have claimed symmetry to play a role even in mate selection, given that symmetric faces are perceived to be more attractive than nonsymmetric ones (Johnstone, 1994; but see Zaidel, Aarde and Baig, 2005, for a discussion). Visual symmetry is thus of clear biological importance.

A few studies have investigated symmetry perception in the haptic modality (e.g., Ballesteros, Manga & Reales, 1997; Ballesteros, Millar & Reales, 1998; Ballesteros & Reales, 2004; Locher & Simmons, 1978; Millar, 1978; Simmons & Locher, 1979). Overall, symmetry seems to play a less prominent role in tactile perception compared to vision, with haptic symmetry detection being modulated by a series of factors such as the mode of exploration (unimanual/bimanual), the size of the stimuli, or their dimensionality (2D or 3D). In particular, it is likely that vertical symmetry becomes salient in touch only for stimuli for which a spatial reference frame – as the one related to the observer’s own body – is available (e.g., Millar, 1978). According to this “reference hypothesis” (Millar, 1978), it has been shown that the use of two hands in a parallel search mode (rather than using just one finger) enhances the tactile detection of vertical symmetry in 2D raised shapes (cf. Ballesteros et al., 1997; Ballesteros et al., 1998). Critically, as is also the case in vision (Rossi-Arnaud, Pieroni &...
Baddeley, 2006), symmetry facilitates tactile processing even indirectly: in a task requiring judgments of 2D shapes closure (rather than the detection of symmetry), bilateral vertically symmetrical open shapes were judged more accurately than asymmetrical open shapes (Ballesteros et al., 1998, Experiment 3). However, from the studies reported above it is not clear whether symmetry salience – and in particular vertical symmetry salience – in haptic perception is independent of exposure to visual symmetry, since symmetry facilitation of tactile processing may derive from the haptic percept being converted into a visuo-spatial image in memory (see Thinus-Blanc & Gaunet, 1997). This issue can be investigated by assessing symmetry perception in congenitally blind observers (who have no prior visual experience) and thus any symmetry perception in such subjects cannot have developed through visual processes. Until now, however, symmetry perception in the blind has not been investigated.

Here we present a study in which a group of early blind subjects and a group of blindfolded sighted subjects were tested on a task requiring them to memorise and reproduce a series of configurations that could be either symmetrical along the horizontal or vertical axis, or non-symmetrical. If symmetry plays a role in haptic perception by reducing the memory load, all participants should remember symmetrical configurations better than non-symmetrical ones. Furthermore, perceptual grouping should facilitate memory to a similar extent regardless of the orientation of the axis of symmetry, as in the horizontal and vertical symmetry conditions the memory load is identical. Nonetheless, studies on symmetry detection in the visual modality have consistently reported an advantage of vertical symmetry over horizontal symmetry detection (e.g., Wagemans, 1997; Wenderoth, 1994), and there is evidence that the vertical axis may be particularly salient even in tactile perception (e.g., Ballesteros et al., 1998). In light of this evidence, one would expect an additional advantage of the vertical axis of symmetry over horizontal axis of symmetry in configurations (VS, HS, NS), for a total of 36 trials. The matrices in the horizontal and frontal plane were of symmetry was in direct vertical (tabletop projected) alignment with the midpoint of the subject’s body (i.e., perpendicular to the horizontal axis of symmetry) and the horizontal axis of symmetry was perpendicular to that (i.e., parallel to the horizontal). When the matrices were presented in the horizontal plane, the vertical and horizontal axes’ orientation referred to the horizontal tabletop: that is, the vertical axis of symmetry was in direct vertical (tabletop projected) alignment.

2. Method

2.1. Participants

Sixteen congenitally or early blind individuals (6 females), mean age 35.8 years (SD = 7.4, age range 22–48), and 26 sighted control participants (14 females), mean age 27.0 (SD = 5.0, age range 20–40), took part in the experiment. Blindness was never associated with a central neural disorder. In all participants blindness was complete, with no light perception. Table 1 describes blind participants’ characteristics.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age (years)</th>
<th>Job activity</th>
<th>Blindness aetiology</th>
<th>Blindness onset</th>
<th>Mobility devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>39</td>
<td>Call operator</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>F</td>
<td>34</td>
<td>Call operator</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>Employee</td>
<td>Oxygen therapy</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>F</td>
<td>36</td>
<td>Call operator and university student</td>
<td>Congenital glaucoma</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>37</td>
<td>Call operator</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>33</td>
<td>Physiotherapist</td>
<td>Trauma</td>
<td>4 months</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>40</td>
<td>Physiotherapist</td>
<td>Oxygen therapy</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>46</td>
<td>Call operator</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>F</td>
<td>29</td>
<td>English teacher</td>
<td>Retinoblastoma</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>48</td>
<td>Call operator</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>Dog</td>
</tr>
<tr>
<td>M</td>
<td>46</td>
<td>Call operator</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>32</td>
<td>Employee</td>
<td>Trauma</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>M</td>
<td>22</td>
<td>University student</td>
<td>Bilateral retinoblastoma</td>
<td>10 months</td>
<td>White cane</td>
</tr>
<tr>
<td>F</td>
<td>39</td>
<td>Physiotherapist</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>White cane</td>
</tr>
<tr>
<td>F</td>
<td>28</td>
<td>Call operator</td>
<td>Trauma</td>
<td>8 months</td>
<td>White cane</td>
</tr>
<tr>
<td>F</td>
<td>38</td>
<td>Call operator</td>
<td>Optic nerve damage</td>
<td>Birth</td>
<td>White cane</td>
</tr>
</tbody>
</table>

2.2. Material

Wooden two-dimensional matrices measuring 20 cm by side and consisting of 25 tactiley perceivable cells were used as stimuli. Each matrix cell measured 4 cm by side. In each trial, 7 target cells were covered with sandpaper in order to be easily recognisable at touch. Matrices were presented both in a horizontal and in a frontal plane. In the horizontal plane condition, matrices were presented on a table, the center of the matrix was aligned with the participant’s body midline, and the bottom side of the matrix was put at a distance of about 20 cm from the subject. In the frontal plane, the matrix was aligned with the participant’s body midline, and the bottom side of the vertical matrix was fixed at a height of about 10 cm from the table’s plane (a wooden panel was used to hold the matrices), at a distance of 20 cm from the subject. There were 3 types of configurations: symmetrical along the vertical axis (VS), symmetrical along the horizontal axis (HS) or non-symmetrical (NS). Examples of the three different types of configurations are shown in Fig. 1. For matrices presented in the frontal plane, the vertical axis of symmetry was in the direction of the force of gravity (i.e., parallel to the participants’ midbody axis), and the horizontal axis of symmetry was perpendicular to that (i.e., parallel to the horizon). When the matrices were presented in the horizontal plane, the vertical and horizontal axes’ orientation referred to the horizontal tabletop: that is, the vertical axis of symmetry was in direct vertical (tabletop projected) alignment with the midpoint of the subject’s body (i.e., perpendicular to the horizon), and the horizontal axis of symmetry was parallel to the horizon (see Ballesteros et al., 1998).

2.3. Procedure

Subjects were seated at a table. Sighted subjects were blindfolded throughout the entire experiment. The experimenter positioned the participant’s hands in the middle of the matrix, parallel to the midbody axis, as the starting position on each trial. Subjects were instructed to tactiley explore the matrices in their preferred order and to memorise the position of the target cells. Symmetry was not mentioned. The exploration phase lasted 16s. At test, subjects were required to indicate (by pointing with their hands) the position of the memorised target cells on a corresponding blank matrix. There was no time limit in the response. For each plane (horizontal and frontal) there were 6 trials for the 3 types of configurations (VS, HS, NS), for a total of 36 trials. The matrices in the horizontal and frontal plane were
Results are reported in Fig. 2. A repeated measures ANOVA was carried out on accuracy (%) with Configuration (VS, HS, NS) and Plane (horizontal vs. frontal) as within-subjects variables and with Group (blind vs. sighted) as between-subjects variable. The analysis revealed a significant effect of Configuration, $F(2,80) = 55.69$, $p < .001$, $\eta^2 = .58$: VS configurations (mean = 77.98%, SD = 12.76) were remembered better than both HS (mean = 70.92%, SD = 14.37) ($p = .001$) and NS configurations (mean = 60.35%, SD = 15.48) ($p < .001$), and HS configurations were remembered better than NS configurations ($p < .001$) (Bonferroni correction for multiple comparisons applied). A significant effect of Group, $F(1,40) = 6.57$, $p = 0.014$, $\eta^2 = .14$, was also reported, due to blind participants (mean = 75.84%, SD = 14.48) overall performing better than sighted ones (mean = 66.00%, SD = 10.40). Finally, the analysis reported a significant effect of the interaction Configuration by Group, $F(2, 80) = 6.$, $p = .002$, $\eta^2 = .14$. No other factors or interactions reached significance.

An analysis of the main effect of Group for each Configuration showed that blind were significantly more accurate than sighted individuals with HS configurations, $t(40) = 2.85$, $p = .007$, and with NS configurations, $t(40) = 3.19$, $p = .003$, whereas the two groups performed similarly with VS configurations ($p = .41$). An analysis of the main effect of Configuration within each Group showed that the sighted remembered VS significantly better than HS configurations, $t(25) = 5.85$, $p < .001$, VS significantly better than NS configurations, $t(25) = 10.28$, $p < .001$, and HS significantly better than NS configurations, $t(25) = 7.07$, $p < .001$. Conversely, blind participants’ performance did not significantly differ with VS and HS configurations ($p = .51$), whereas it was better with VS compared to NS stimuli, $t(15) = 4.37$, $p = .001$, and with HS compared to NS stimuli, $t(15) = 3.23$, $p = .006$.

3.1. Encoding strategies

Encoding spontaneous strategies were also analysed. Overall, blind subjects were quite consistent in their exploration strategies. In particular, 15 out of the 16 blind participants used the two hands in exploring the matrices in all experimental trials. One blind subject kept his left hand anchored to the matrix left side and explored the matrix with his right hand, and did so in all experimental trials. Notably, the performance of this participant was quite poorer compared to the mean accuracy of the other 15 blind individuals, being equal to 53.57% for VS configurations (vs. 81.83% of the other 15 blind), 48.81% for HS configurations (vs. 80.32% of the other 15 blind) and 39.29% for NS configurations (vs. 71.11% of the other 15 blind). Blind participants also tended to be very consistent in the direction of the first exploration of the matrices throughout the experiment. In particular, 14 blind participants always started scanning from the upper row of the matrix, keeping the two hands approximately parallel with the left hand exploring the left portion of the row and the right hand exploring the right portion of the row, hence descending down to the next row and going down to the bottom row (one of these participants started exploration from the bottom row in 2/3 of the trials). The other two blind subjects (one of which was the same that used just one hand for
3.2. Effect of blindness onset

Blindness occurring within the first few months of life is usually considered (at least regarding its impact on cognitive abilities, see Cattaneo and Vecchi, 2010, for review) in the same vein as congenital blindness. Nonetheless, it may be that even a brief exposure to visual symmetrical environmental stimuli, such as faces, might induce a specific sensitivity for vertical symmetry. Therefore, we repeated the same analysis reported above excluding from the blind group the three subjects that were not congenitally blind (see Table 1). The ANOVA revealed the same pattern of results as with the whole sample of subjects, that is a significant effect of Configuration (p<.001, \(\eta^2 = .59 \)), a significant effect of Group (p=0.014, \(\eta^2 = .15 \)) and a significant interaction Configuration by Group (p<.001, \(\eta^2 = .19 \)). In particular, the 13 blind subjects included in the analysis were less accurate with NS than with VS (p=0.005) and HS (p=0.002) configurations, whereas no difference in performance was reported between VS and HS configurations (p=.48). Nonetheless, the three blind subjects affected by early but not congenital blindness remembered overall better VS (mean accuracy = 82.94%, SD = 16.25) than HS (mean = 67.06%; SD = 19.06) and NS (mean = 69.84%, SD = 14.88) configurations (all these three subjects used two hands in scanning the matrices).

4. Discussion

Vertically and horizontally symmetrical configurations were overall remembered better than non-symmetrical configurations by both blind and blindfolded sighted participants. This suggests that symmetry worked as a gestalt principle of perceptual organization (see Machilsen, Pauwels & Wagemans, 2009) reducing the memory load and making the task more simple, even if symmetry was an incidental feature and participants were not informed that some configurations were symmetrical and others were not. There was, however, one important difference between the two groups: whereas the blindfolded sighted subjects were more accurate in retrieving patterns which were symmetrical along the vertical axis than along the horizontal axis, there was no such additional benefit of vertical salience in the blind. This shows that the exceptional salience of vertical symmetry in haptic perception is dependent on prior visual experience.

Symmetrical configurations contain overall less amount of information than non-symmetrical patterns, and are thus easier to remember. Critically though, the facilitation due to perceptual grouping is potentially the same for vertically and horizontally symmetrical configurations. Hence, the better performance of blindfolded sighted participants in retrieving vertically symmetrical compared to horizontally symmetrical configurations cannot be entirely attributable to some gestalt perceptual grouping but is likely to be “hard-wired” in the visual system. Indeed, the visual system detects vertical symmetry more easily than horizontal symmetry (e.g., Palmer & Hemenway, 1978; Royer, 1981; Wagemans, 1997; Wenderoth, 1994) and it has been suggested that the vertical symmetry preference may depend on the bilateral symmetry of the brain itself (see Mach, 1886/1959; Julesz, 1971). According to this view, vertical symmetry detection results from a point-by-point matching process between symmetrical opposite loci in each cortical hemisphere that would be subtended by fibers crossing over through the corpus callosum (e.g., Desjardins, Braun, Achim & Roberge, 2009; Herbert & Humphrey, 1996). Our study demonstrates that the advantage of vertical symmetry over horizontal symmetry is based on visual experience, as such advantage was not present in the blind subjects.

In light of this, it is remarkable that the three blind subjects that were not congenital but could see for a few months (~10), showed higher accuracy in remembering vertically than horizontally symmetrical configurations, thus resembling sighted subjects’ behaviour. Although the small sample size (n=3) does not allow to make any statistical analysis, we may speculate that even a very brief exposure to visually symmetric stimuli (such as faces) can induce a particular sensitivity to vertical symmetry. Future studies may directly assess this issue by investigating haptic symmetry perception in a sample of late blind individuals. Incidentally, it is worth mentioning that in this study blind individuals overall outperformed blindfolded sighted subjects (even when controlling for scanning strategies). Previous studies on haptic
perception have often reported similar level of accuracy of early blind and sighted subjects (e.g., Heller, 2003; Vecchi, Tinti & Cornoldi, 2004), nonetheless both the specific nature of the task used and the specific characteristic of the examined blind individuals – such as Braille proficiency, education, mobility skills – likely play a major role in determining blind participants’ performance (e.g., Loomis, Klatzky, Golledge, Cinelli, Pellegrino & Fry, 1993; Thinus-Blanc & Gaunet, 1997).

Previous studies have shown that haptic detection of vertical symmetry was facilitated by bimanual exploration conditions when the stimulus’ axis of symmetry was aligned to the midaxis of the subject’s body in the midtransverse plane (see Ballesteros et al., 1997, 1998; Millar, 1978). In our experiment, the midaxis of the matrices was aligned to the midline of each subject’s body, and the majority of participants used two hands, adopting a parallel-mode of exploration. Nevertheless, symmetry benefited memory even in those subjects who used only their right hand to explore the configurations while keeping their left hand anchored to the left side of the matrix as a spatial reference (critically, in the sighted participants using one hand, the level of accuracy was comparable, and almost higher, than that of sighted subjects using two hands). Hence, haptic symmetry detection does not seem to be mediated by a point-by-point matching between the information coming from each hand, with such matching process likely occurring at the level of the corresponding mental representation generated (that in sighted participants is likely to be visually based, see Thinus-Blanc & Gaunet, 1997).

No differences were reported in memory for configurations presented on the frontal and flat/horizontal planes, neither in the