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Background: Transcranial direct current stimulation (tDCS) is increasingly used in research and clinical
settings, and the dorsolateral prefrontal cortex (DLPFC) is often chosen as a target for stimulation. While
numerous studies report modulation of cognitive abilities following DLPFC stimulation, the wide array of
cognitive functions that can be modulated makes it difficult to predict its precise outcome.

Objective: The present review aims at identifying and characterizing the various cognitive domains
affected by tDCS over DLPFC.

Methods: Articles using tDCS over DLPFC indexed in PubMed and published between January 2000 and
January 2014 were included in the present review.

Results: tDCS over DLPFC affects a wide array of cognitive functions, with sometimes apparent conflicting
results.

Conclusion: Prefrontal tDCS has the potential to modulate numerous cognitive functions simultaneously,
but to properly interpret the results, a clear a priori hypothesis is necessary, careful technical consid-
eration are mandatory, further insights into the neurobiological impact of tDCS are needed, and
consideration should be given to the possibility that some behavioral effects may be partly explained by
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parallel modulation of related functions.
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Introduction

In 1865, Broca introduced the idea of studying the neural basis of
cognitive processes by the anatomical-correlative method [1].
While studying the effect of a brain lesion in his famous patient
“Monsieur Tan”, who had a neurosyphilic lesion to the left hemi-
sphere that impaired his language production, Broca concluded that
it was possible to infer a causal relationship between a specific
brain region and a cognitive function [2]. This discovery ultimately
sparked the emergence of neuropsychology, which aims to better
understand the link between brain and behavior, and led to a wide
interest in the study of patients with various brain lesions. Subse-
quently, remarkable progress was made using this approach, for
example during World War II, where researchers were able to study
the effects of focal brain lesions induced by weapons in conjunction
with cognitive testing [3].

Despite the numerous and significant insights derived from the
“lesion method”, researchers were — and still are — confronted with
methodological limitations when trying to ascertain brain—
behavior relationships in patient populations. Firstly, lesions are
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Table 1
tDCS studies of prefrontal cortex.
Authors Target Montage Timing Duration Intensity  Electrode size Cognitive Cognitive
region(s) of tDCS domain effect™®
Fregni et al. Left DLPFC  Anodal F3/Cathodal Online 10 min 1 mA 35 cm? Working 1) Left anodal:
(2005) [36] contra SO memory increased
Cathodal F3/Anodal performance
contra SO (sequential
Sham (F3/SO) letter task)
Marshall et al. Left/Right ~ Anodal F3/ Online 15 min (15 s 260 uA Diameter: 8 mm Working 1) Bilateral
(2005) [62] DLPFC Cathodal F4 on and memory (left anodal/right
Reference: mastoids 15 s off, cathodal): decreased
Sham (F3/F4/mastoid) intermittent) performance
(slower RTs)
Fecteau et al. Left/Right ~ Anodal F3/Cathodal F4 Online 20 min 2 mA 35 cm? Risk taking 1) Bilateral (left
(2007) [61] DLPFC Anodal F4/Cathodal F3 cathodal/right
Sham (F3/F4) anodal): decreased
Anodal F3/Cathodal risk taking (Baloon
contra SO Analogue Risk Task)
Anodal F4/Cathodal 2) Right anodal:
contra SO no sign. effect on
Sham (F3 or F4/ risk taking
contra. SO)
Fecteau et al. Left/Right  Anodal F3/ Online 15 min 2 mA 35 cm? Risk taking 1) Bilateral (left
(2007) [19] DLPFC Cathodal F4 cathodal/right
Anodal F4/ anodal): reduced
Cathodal F3 risk taking
Sham (F3/F4) (Risk Task)
Beeli et al. Left DLPFC  Anodal F3 or F4/ Offline 15 min 1 mA 35 cm? Risk taking 1) Left anodal:
(2008) [37] Right DLPFC Cathodal reduced risk
ipsi. mastoid taking behaviors
Cathodal F3 or F4/ (driving stimulator)
Anodal 2) Right anodal:
ipsi. mastoid reduced risk taking
behaviors
(driving stimulator)
Beeli et al. Right DLPFC Anodal FC3/Cathodal Online 5.5 min 1.5 mA 35 cm? Executive 1) Right cathodal:
(2008) [14] ipsi. mastoid function increases
Cathodal FC3/Anodal (impulsivity) impulsiveness
ipsi. Mastoid Feeling (Go-Nogo task)
Sham of “presence”
Boggio et al. Left DLPFC  Anodal F3/Cathodal Online 5 min 2 mA 35 cm? Pain perception 1) Left anodal:
(2008) [52] right SO decreased pain
Sham (F3/SO) perception (higher
pain threshold)
Fregni et al. Left/right Anodal F3/Cathodal F4  Offline 20 min 2 mA 35 cm? Food craving 1) Bilateral
(2008) [20] DLPFC Anodal F4/Cathodal F3 (left anodal/right
Sham (F3/F4) cathodal): reduced
food consumption
but not craving
2) Bilateral (left
cathodal/right
anodal): reduced
food craving and
consumption
Knoch et al. Right DLPFC Cathodal F4/Anodal Online 14 min 1.5 mA 35 cm? Emotions 1) Right cathodal:
(2008) [33] contra. SO Reference: Social reduced propensity
100 cm? behaviors to punish unfair
behavior
Ohn et al. Left DLPFC  Anodal F3/Cathodal Online 30 min 1 mA 25 cm? Verbal working 1) Left anodal:
(2008) [41] right SO memory enhanced
Sham (F3/SO) performance
(3-back)
Priori et al. Left/Right  Anodal F3 and Offline 10 min 1.5 mA Active: Decision 1) Bilateral
(2008) [71] DLPFC F4/Cathodal deltoid 32 cm? making (left anodal/right
Cathodal F3 and Reference: anodal): increased
F4/Anodal deltoid 64 cm? lie responses
Sham (F3—F4/Deltoid)
Boggio et al. Left DLPFC ~ Anodal F3/Cathodal Online 5 min 2 mA 35 cm? Emotion 1) Left anodal:
(2009) [38] contra SO processing decreased negative
Sham (F3/SO) Pain emotions
perception
(unpleasantness
and emotional
discomfort)
Cerruti et al. Left DLPFC  Anodal F3 or F4/ Online 20 min 1 mA 16.3 cm? on F3/F4  Verbal problem 1) Left anodal:
(2009) [55] Right DLPFC Cathodal contra SO 30 cm? on SO solving improvement
Cathodal F3 or F4/ (RAT task)

Anodal contra SO
Sham F3/F4

2) Cathodal: no
sign. effect
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Authors Target Montage Timing Duration Intensity  Electrode size Cognitive Cognitive
region(s) of tDCS domain effect™”
Dockery et al. Left DLPFC  Anodal F3/Cathodal Online 15 min 1 mA 35 cm? Executive 1) Left cathodal
(2009) [15] contra. SO functioning and left anodal:
Cathodal F3/Anodal (planning) enhanced
contra. SO performance
Sham (F3/SO) (Tower of London)
Elmer et al. Left DLPFC  Anodal F3 or F4/ Online 5 min 1.5 mA 28 cm? on F3/F4 Verbal learning 1) Left cathodal:
(2009) [24] Right DLPFC Cathodal mastoid 100 cm? on SO impaired
Cathodal F3 or F4/ short-term verbal
Anodal mastoid learning
Sham (F3 or F4/
Mastoid)
Fertonani et al. Left DLPFC  Anodal F3/Cathodal Offline 8—10 min 2 mA 35 cm? Language 1) Left anodal:
(2010) [53] shoulder (picture facilitation
Cathodal F3/Cathodal naming) (faster RTs)
shoulder 2) Left cathodal:
Sham (F3/Shoulder) no sign. effect
Hecht et al. Left/Right Anodal F3/Cathodal F4  Online 22 min 2 mA 9 cm? Decision 1) Bilateral
(2010) [69] DLPFC Anodal F4/Cathodal F3 making (left anodal/right
Control (no stimulation) cathodal):
modified strategies
(Probabilistic
Guessing Task)
Mameli et al. Left/Right ~ Anodal F3/Anodal Offline 15 min 2 mA Target: 32 cm? Decision 1) Bilateral
(2010) [68] DLPFC F4/Reference Reference: 64 cm? making (left anodal/right
right deltoid muscle (lies) anodal): modulated
Sham (F3/F4/Deltoid) responses to lies
(decreased RTs)
Ambrus et al. Left DLPFC ~ Anodal F3 or F4/ Online 10 min 1 mA 35 cm? Categorization 1) Left anodal and
(2011) [28] Right DLPFC Cathodal Cz learning right anodal:
Cathodal F4/Anodal Cz decreased
Sham (F4/Cz) performance
(accuracy of
identification of
prototype)
Andrews et al. Left DLPFC ~ Anodal F3/Cathodal SO  Online 10 min 1 mA 35 cm? Working 1) Left anodal:
(2011) [44] memory enhanced
performance
(digit span
forward)
Hammer et al. Left DLPFC  Anodal F3/Cathodal Online 30 min 1 mA 35 cm? Memory 1) Left cathodal:
(2011) [26] contra. SO hampered
Cathodal F3/Cathodal memory
contra. SO performance
Sham (F3/SO) after errorful
learning
Leite et al. Left DLPFC  Anodal F3/Cathodal Online 15 min 1 mA 35 cm? Executive 1) Left anodal:
(2011) [22] contra. SO functions increased
Cathodal F3/Cathodal (mental/ performance
contra. SO motor (set switching task)
Sham (F3/SO) flexibility) 2) Left cathodal:
decreased
performance
(set switching task)
Mulquiney et al. Left DLPFC  Anodal F3/Cathodal Online 10 min 1 mA 35 cm? Working 1) Left anodal:
(2011) [42] contra. SO memory improved speed
Sham (F3/SO) of performance
(2-back task).
Pefla-Gémez et al.  Left DLPFC  Anodal F3/Cathodal C4 Online 20 min 1 mA 35 cm? Emotion 1) Left anodal:
(2011) [56] Sham (F3/C4) processing enhanced down-
regulation of
negative emotions
Teo et al. Left DLPFC  Anodal F3/Cathodal Online 20 min 1mAand 35cm? Working 1) Left anodal:
(2011) [43] right SO 2 mA memory enhanced
Sham (F3/SO) performance at
2 mA (faster RTs,
no effect on
accuracy)
Zaehle et al. Left DLPFC  Anodal F3/Ipsi. Offline 15 min 1 mA 35 cm? Working 1) Left anodal:
(2011) [21] mastoid memory increased
Cathodal F3/Ipsi. performance
mastoid 2) Left cathodal:
Sham (F3/mastoid) reduced
performance

(continued on next page)
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Authors

Target
region(s)

Montage

Timing
of tDCS

Duration Intensity

Electrode size

Cognitive
domain

Cognitive
effect™®

Balconi and
Vitaloni
(2012) [31]

Gladwin et al.
(2012) [45]

Hortensius et al.
(2012) [64]

Javadi and
Walsh
(2012) [57]

Javadi et al.
(2012) [25]

Jeon and Han
(2012) [46]

Leite et al.
(2012) [16]

Maeoka et al.
(2012) [39]

Left DLPFC

Left DLPFC

Left/Right

DLPFC

Left DLPFC

Left DLPFC

Left DLPFC

Right DLPFC

Left/Right
DLPFC

Left DLPFC

Cathodal F3/Anodal

right SO

Sham (F3/Right SO)

Anodal F3/Cathodal

right SO

Sham (F3/Right SO)

Anodal F3/Cathodal F4
Anodal F4/Cathodal F3
Sham (F3/F4)

Anodal F3/Cathodal

contra. SO

Cathodal F3/Cathodal
contra. SO
Sham (F3/SO)

Anodal F3/Cathodal

contra. SO

Cathodal F3/Cathodal
contra. SO
Sham (no stimulation)

Anodal F3/Cathodal

right SO

Anodal F4/Cathodal
left SO
Sham (F3 or F4/SO)

Anodal F3/Cathodal F4
Anodal F4/Cathodal F3
Sham (F3/F4)

Anodal F3/Cathodal

contra. SO

Sham (F3/SO)

Offline

Offline

Offline

Online

Online

Offline

Online

Offline

15 min 2 mA

1 mA

10 min

15 min 2 mA

20 min

3 min 1.5 mA

20 min 1 mA

<30 min 2 mA

20 min 1 mA

35 cm?

35 cm?

35 cm?

Target: 12.2 cm?
Reference:
30.2 cm?

Target: 12.2 cm?
Reference:
30.2 cm?

35 cm?

35 cm?

35 cm?

Semantic
congruence
processing

Working
memory

Emotion
regulation

Declarative
memory

Verbal memory

Working
memory
Attention
Executive
functions
(inhibition,
mental
flexibility)

Executive
functions
(mental
flexibility)

Emotion
processing

1)

—_

—_

1

—_

—_

N

—_

Left cathodal:
improved
performance
(reduced RTs for
incorrect object)
Left anodal:
improved
performance
(congruent blocks
of the IAT task)
Bilateral (left
anodal/right
cathodal):
increased
aggressive
behaviors and
anger

Left anodal:
enhanced
memory
performance
(applied during
encoding and
recognition (trend))
Left cathodal:
impaired memory
performance
(applied during
encoding and
recognition)

Left anodal:
enhanced
memory
performance
(accuracy)

Left cathodal:
impaired memory
performance
(accuracy)

Left anodal:
enhanced
performance
(stroop, digit
span backwards,
K-BNT)

Right anodal:
enhanced
performance
(stroop,
visuospatial
memory/
attention task)
Bilateral

(left anodal/right
cathodal):
increased
switching
performance
(letter-digit task),
improved
accuracy and
decreased
switching
performance
(vowel-consonant
parity task)
Bilateral

(left cathodal):
increased accuracy
(letter-digit task)
Left anodal:
decreased negative
emotion
(decreased
unpleasantness
subjective report)
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Authors Target Montage Timing Duration Intensity  Electrode size Cognitive Cognitive
region(s) of tDCS domain effect™”
Metuki et al. Left DLPFC  Anodal F3/Cathodal Fp2 Online 11 min 1 mA 35 cm? Executive 1) Left anodal:
(2012) [54] Sham (F3/Fp2) functions: increased
Problem performance
solving (verbal insight
task)
Minati et al. Left/Right Anodal F3/Cathodal F4  Online 20.5 + 4.1 min 2 mA N.S. Decision 1) Bilateral
(2012) [70] DLPFC Anodal F4/Cathodal F3 making (left cathodal/
Sham (F3/F4) right anodal):
no sign. effect
on risk taking
(Gambling Task)
but enhanced
response
confidence
Mylius et al. Left DLPFC  Anodal F3 or F4/ Online 20 min 2 mA 35 cm? Working 1) Right anodal:
(2012) [29] Right Cathodal contra SO memory increased
DLPFC Cathodal F3 or F4/ Pain tolerance to pain
Anodal contra SO perception 2) Left cathodal:
Sham (F3 or F4/ decreased number
contra SO) of outliers in
2-back task
Nitsche et al. Left DLPFC  Anodal F3/Cathodal Offline 10 min or 1 mA 35 cm? Emotion 1) Left anodal:
(2012) [50] contra. SO Online 20 min processing enhanced positive
Cathodal F4/Anodal emotion (positive
contra. SO emotion detection)
Sham (F3/contra. SO)
Sela et al. Left/Right Anodal F3/Cathodal F4  Offline 15 min 1.5 mA 35 cm? Language 1) Bilateral
(2012) [65] DLPFC Cathodal F3/Anodal F4 comprehension (left anodal/
Sham (F3/F4) (semantic right cathodal):
processing) enhancement of
performance
(predictable
idioms)
2) Bilateral
(left cathodal/
right anodal):
enhancement of
performance
(unpredictable
idioms)
Vannorsdall et al. Left DLPFC  Anodal F3/Cathodal Cz  Online 30 min 1 mA 27 cm? Verbal fluency 1) Left anodal:
(2012) [18] Cathodal F3/Cathodal Cz increased
Sham (F3 or F4/Cz) performance
(category-cued)
2) Left cathodal:
decreased
performance
(clustered words)
Asthana et al. Left DLPFC  Anodal F3/Ipsi. Offline 12 min 1 mA 35 cm? Fear memory 1) Left cathodal:
(2013) [17] mastoid disrupted fear
Cathodal F3/Ipsi. memory
mastoid consolidation
Sham (F3/mastoid)
Cattaneo et al. Left DLPFC  Anodal (between F3 Offline 20 min 2 mA 35 cm? Emotion 1) Left anodal:
(2013) [51] and F5)/Cathodal processing enhancement
contra. SO of beauty experience
Sham (F3—F5/S0)
Fecteau et al. Left/Right  Anodal F3/Cathodal F4  Offline 20 min 2 mA 35 cm? Decision 1) Bilateral
(2013) [66] DLPFC Anodal F4/Cathodal F3 making (left cathodal/
Sham (F3/F4) right anodal):
enhanced the
generation of
untruthful
answers
2) Bilateral
(left anodal/
right cathodal):
enhanced the
generation of
untruthful answers
Feeser et al. Right DLPFC Anodal F4/Cathodal Online 20 min 1.5 mA Anode: 35 cm? Emotion 1) Right anodal:
(2013) [35] contra. SO Cathode: 100 cm? regulation enhancement
Sham (F4/SO) of performance

(down-regulation
or upregulation
of emotions)

(continued on next page)
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Authors Target Montage Timing Duration Intensity  Electrode size Cognitive Cognitive
region(s) of tDCS domain effect™”
Foerster et al. Left DLPFC  Anodal F3/Cathodal Online 13 min 2 mA 20 cm? Motor learning 1) Left anodal:
(2013) [59] contra. SO enhanced motor
Sham (F3/SO) learning
(motor-imagery-
induced learning)
Hoy et al. Left DLPFC  Anodal F3/Cathodal Offline 20 min 1mAand 35 cm? Working 1) Left anodal:
(2013) [47] right SO 2 mA memory enhanced
Sham (F3/SO) performance
(both 1 mA
and 2 mA)
Iuculano and Left/Right Anodal F3/Cathodal F4  Online 20 min x 1 mA 3 cm? Learning and 1) Bilateral:
Cohen DLPFC Sham (F3/F4) 6 sessions automaticity impaired
Kadosh numerical
(2013) [63] learning but
enhanced
automaticity for
learned materials
Javadi and Cheng Left DLPFC  Anodal F3/Cathodal Online 20 min 1.5 mA Target: 12.2 cm? Long term 1) Left anodal:
(2013) [27] contra. SO Reference: 30.2 cm? memory enhanced memory
Cathodal F3/Cathodal performance
contra. SO (recognition)
Sham (F3/S0O)
Kongthong et al. Left DLPFC  Cathodal F3/Anodal T6  Offline 20 min 1 mA 25 cm? Visual semantic 1) Left cathodal:
(2013) [23] Sham (F3/T6) processes decreased
performance
(elimination
of priming effect)
Manenti et al. Left/Right  Anodal F3 or F4/ Online 6 min 1.5 mA 35 cm? Verbal episodic 1) Left and right
(2013) [58] DLPFC Cathodal contra. SO memory anodal: increased
Sham (F3 or F4/SO) memory
performance in
young subjects
2) Left anodal:
increased memory
performance in
older subjects
Meiron and Lavidor Left DLPFC  Anodal F3 or F4/ Online 15 min 2 mA Anode: 16 cm? Working 1) Left anodal:
(2013) [48] Right DLPFC Cathodal Cz Cathode: 35 cm? memory improved
Sham (F3/Cz) performance
(highest memory
load males only)
2) Right anodal:
improved
performance
(highest memory
load females only)
Mengarelli et al. Left DLPFC  Cathodal F3/Anodal Online 15 min 1 mA 35 cm? Decision 1) Left cathodal:
(2013) [32] Right DLPFC contra SO making reduced behavior-
Cathoal F4/Anodal induced preference
contra SO change
Sham (F3 or F4/SO)
Motohashi et al. Left DLPFC  Anodal F3/Cathodal Offline 20 min 1 mA 35 cm? Mood 1) Left anodal:
(2013) [60] contra SO no sign. effect
Sham (F3/SO) on mood
Nozari et al. Left/Right Anodal F3/Cathodal F4  Online 20 min 1.5 mA 25 cm? Attention 1) Bilateral
(2013) [67] DLPFC Sham (F3/F4) Language (left anodal/right
cathodal):
increased
performance
(verbal task)
Plewnia et al. Left DLPFC  Anodal F3/Cathodal Online 20 min 1 mA 35 cm? Executive 1) Left anodal:
(2013) [40] contra SO functions no sign. effect
Sham (F3/SO) for whole group
but decreased
performance
for COMT
Met—Met
Tanoue et al. Right DLPFC Cathodal F4/Anodal Offline 10 min 1.5 mA 35 cm? Attention 1) Right cathodal:
(2013) [34] contra. cheek impairs internal
Sham (F4/contra. attention
cheek)
Vanderhasse et al.  Left DLPFC  Anodal F3/Cathodal Online 20 min 2 mA 35 cm? Working 1) Left anodal:
(2013) [49] contra SO memory enhanced
Sham (F3/S0O) Emotion performance
processing (working
memory of

angry faces)
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Authors Target Montage Timing Duration Intensity  Electrode size Cognitive Cognitive
region(s) of tDCS domain effect™”
Vanderhasse et al.  Left DLPFC  Anodal F3/Cathodal Offline 20 min 2 mA 35 cm? Emotion 1) Left anodal:
(2013) [49] contra SO processing enhanced
Sham (F3/SO) cognitive control
for positive stimuli
Balconi et al. Left DLPFC  Cathodal F3/Anodal Offline 15 min 2 mA 35 cm? Semantic 1) Left cathodal:
(2014) [30] right SO processing modulated
Sham (F3/Right SO) of actions performance
(reduced RTs
to incorrect
object use but
increased errors
rates)
Nelson et al. Right/Left Anodal F3/Cathodal F4  Online 10 min 1 mA 35 cm? Attention/ 1) Bilateral
(2014) [72] DLPFC Cathodal F3/Anodal F4 Vigilance (anodal left/

Sham (F3/F4)

cathodal right
and anodal right/
cathodal left):
enhanced
performance
(detection task)

2 Only main results were included in the present table.

b Presented results are restricted to the DLPFC. Results from an additional method of investigation (such as EEG) or an alternative region were not included.

usually large and often encompass multiple brain areas or net-
works, as they are most frequently acquired through stroke,
ischemia, or traumatic brain injury. Secondly, and consequently,
multiple functions are often altered simultaneously, inducing sub-
stantial variability in the nature and amplitude of the deficits
observed in patients with relatively similar and overlapping lesions.
Thirdly, patients often suffer from other medical conditions, either
pre-existent or consequent to injury, further contributing to the
heterogeneity of the studied population. Lastly, it is difficult to
conduct a study with a large sample of patients with overlapping
lesions, which has led to numerous case studies and findings that
have been difficult to replicate [4].

The development of non-invasive neuromodulation methods in
the early 1980’s offered the promise to circumvent many of the
methodological caveats associated with the “lesion method”,
allowing causal inference in the study of brain—behavior relation-
ship in healthy populations. While repetitive transcranial magnetic
stimulation (rTMS) was increasingly used in the mid 1990’s to study
the influence of so-called “virtual lesions” in different regions of the
brain, interest in transcranial direct current stimulation (tDCS)
emerged more recently. tDCS involves the induction of a constant
low-amperage electric current (usually 1-2 mA) applied to the
cortex via surface electrodes positioned on the scalp of the subject
that can be used to probe and modulate cortical plasticity in the
human cortex [5]. In standard protocols, the “active” electrode is
positioned over the region of interest while the “reference” elec-
trode is placed contralaterally over the homologous region or su-
praorbital area. The current flows from the positively charged
anode toward the negatively charged cathode. The effect of tDCS on
a specific region is partly determined by the polarity of the stim-
ulation: cortical excitability is thought to be enhanced under the
anode, and decreased under the cathode [6].

As with TMS protocols, initial studies using tDCS [6,7] investi-
gated its effects on motor cortex, mainly because of the possibility
to directly measure the increase or reduction of cortical excitability
through TMS-induced motor evoked potentials (MEPs). Since tDCS
was shown to be efficient in this regard, many studies began to
report the impact of tDCS on other brain functions in healthy sub-
jects, such as vision [8], language [9], and learning [10]. The
investigation of the method’s potential for the treatment of
different neurological and psychiatric disorders, such as depression

[11], stroke [12], and schizophrenia [13] has also recently arisen. In
fact, over the past 16 years, over one thousand papers have been
published on the use of tDCS on different brain functions. However,
studies investigating the effect of tDCS on cognition have shown a
lack of specificity and a relative inconsistency in both the modu-
latory effects and the choice of tDCS parameters, which has led to a
large number of heterogenous results. For example, modulation of
the dorsolateral prefrontal cortex (DLPFC), which is often chosen as
target for tDCS because of its role in numerous high-order cognitive
processes, has been associated with both an increase and a decrease
in executive functions [14—16] and has been suggested to influence
— among others — spatial memory [17], verbal fluency [18], risk
taking [19] and craving [20].

Therefore, it remains to be determined to which extent tDCS can
compensate for obvious limitations to the lesion method. For
example, it is debatable whether tDCS can target specific behaviors
associated with a given area when the physiologic impact of tDCS
itself can vary considerably between subjects. Indeed, the effect of
tDCS on a specific brain area will depend on a variety of factors
including electrode montage and size, but also according to size and
shape of the participant head and fat tissue amount, among others.
As aresult, the amount of current induced in a given brain area may
vary considerably across individuals. Furthermore, the brain region
and neuronal populations that underlie a specific cognitive function
may also be subject to important variations. Finally, the effects of
tDCS for a given brain region are state-dependent and the state of
brain activity will differ for different cognitive functions (even if the
same brain area is engaged in different functions).

Another, often overlooked issue arises from the fact that stimu-
lation of a given area produces widespread modulation of brain ac-
tivity, which in turn can affect multiple cognitive functions
simultaneously. This can lead to an important problem of interpre-
tation since the observed effect of stimulation could be due to the
interaction of several parallel cognitive effects, which are sometimes
in opposite directions. To better understand the challenges of inter-
pretation of results of studies using tDCS to modulate dorsolateral
prefrontal cortical functions, we undertook a systematic review of
the literature. Care was taken to select and compare studies that
target the same area and use similar electrode montages. The in-
ternational 10-20 electrode system areas F3 and F4 were chosen, as
they are the most commonly used in tDCS studies of the DLPFC.
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Material and methods

A systematic review of the literature was performed using the
following database: PubMed (2000 to Jan 2014) and Medline (2000
to Jan 2014). We used the following search keywords: “tDCS”,
“transcranial direct current stimulation”, “prefrontal”, “DLPFC”,
“cognition”. We initially identified 202 articles corresponding to
our search criteria. After carefully reviewing the abstract of the
different papers, we identified 67 articles investigating only healthy
subjects. Of these 67 publications, we selected the 63 articles using
F3 and/or F4 as stimulation targets. Subsequently, we read through
the full texts of the final sample of articles in order to gather the
following information: location of stimulation; electrode montage;
duration of stimulation; timing of stimulation and task; intensity;
electrode size; cognitive domain; and results. We also looked
through the references of the selected papers for additional rele-
vant papers, which led to the inclusion of one additional paper.
Studies were only included if they were published in English and
described thoroughly their methodology. Studies that did not
directly assess the impact of prefrontal tDCS on a cognitive task
were also excluded, leading to the exclusion of two additional
studies and a final sample of 61 publications.

An important issue that needs to be taken into consideration
when comparing tDCS studies is the electrode montage and the use
of terms such as ‘cathodal stimulation’ and ‘anodal stimulation’. It is
not possible to apply anodal or cathodal stimulation, as a second
electrode is always needed to deliver current to the brain. It is
therefore important to emphasize that the ‘site of stimulation’ is not
simply the location of one electrode, but rather the combination of
the anode and cathode. In the present review, a distinction was
made between stimulation paradigms that place one electrode
(cathode or anode) over the specific target area (F3 or F4) and the
other over a ‘reference’ site (usually the supraorbital area) and
those that place both electrodes over the target area bilaterally.

Results

Using the same site of stimulation (F3 and F4, or F3/F4 and
reference site), results from the 61 publications suggest that tDCS
applied over the prefrontal cortex can influence the performance of
a wide range of cognitive functions. The results and description of
the studies are shown in Table 1. Note that these results are
restricted to the effects of DLPFC stimulation on cognitive tasks,
even if a study investigated other regions or if other methods were
used to quantify the effects of tDCS (i.e. EEG). In order to be succinct,
only the main results of the different studies are reported. Non-
significant results in supplementary tasks included in the para-
digms are not reported. For a clearer understanding of the effects of
different types of stimulation (target regions and polarity) on
cognitive function, the results are divided into the seven different
types of electrode montages that were used in the included articles.

1. Cathode over left DLPFC, anode over reference site. Was
shown to decrease: a) working memory performance [21]; b)
executive function performance (mental flexibility: [22]); c)
verbal and semantic performance (visual priming effect: [23];
word fluency task: [18]); d) fear memory consolidation [17]; e)
verbal memory performance [17,25—28]). Was shown to in-
crease: a) working memory performance [29]; b) semantic
processing performance [30,31]; c) executive functioning per-
formance (planning: [15]). Was shown to modulate: a) decision
making [32].

2. Cathode over right DLPFC, anode over reference site. Was
shown to decrease: a) propensity to punish unfair behavior [33],
b) executive function performance (impulsivity: [14]); c)

attention control [34]. Was shown to increase: a) cognitive
control during emotion regulation [35]; b) tolerance to heat pain
[29]; c) executive functioning performance (planning: [15]).

3. Anode over left DLPFC, cathode over reference site. Was
shown to decrease: a) working memory performance [36]; b)
risk taking behaviors [37]; c) negative emotions perception
[38,39]; d) categorization learning [28]); e) executive func-
tioning performance only in a COMT Met—Met group (cognitive
flexibility [40]). Was shown to increase: a) working memory
performance [21,41—49]; b) positive emotion processing
[49—51]; ¢) pain thresholds [52]; d) performance on verbal tasks
(verbal; word retrieval: [53]; word fluency: [18]); e) executive
function performance (mental flexibility: [22]; inhibition: [46];
problem solving: [24,54,55]; planning [15]); f) control of nega-
tive emotions [39,56]; g) memory performance and learning
[25,27,57—59]. Showed no significant effect on: a) mood [60].

4. Anode over right DLPFC, cathode over reference site. Was
shown to decrease: a) risk taking [37]; b) propensity to punish
unfair behaviors [33]. Was shown to increase: a) working
memory performance [48]; b) visuospatial memory [46]; c)
executive functioning performance (inhibition: [46]); d) pain
thresholds [29]; e) emotion regulation [35]; f) memory per-
formance [58]. Showed no significant effect on: risk taking [61].

5. Anode over left DLPFC, cathode over right DLPFC. Was shown
to decrease: a) working memory performance [62]; b) food
consumption but not craving [20]; c) executive function per-
formance (mental flexibility: [16]). Was shown to increase: a)
aggressive behaviors and anger [64]; b) executive function
performance (mental flexibility: [16]); c) language compre-
hension [65]; d) generation of untruthful answer [66]; e)
attention and language performance [67]; f) automaticity for
learned materials [65]. Was shown to modulate: a) responses to
lies [68]; b) decision making [69].

6. Cathode over left DLPFC, anode over right DLPFC. Was shown
to increase: a) executive function performance (mental flexi-
bility: [16]); b) response confidence in a gambling task [70]; c)
working memory performance [29]; d) generation of untruth-
ful answers [66]; e) language comprehension [65]. Was shown
to decrease: a) risk-taking behaviors [19,61]; b) food craving and
consumption [20].

7. Anode over left DLPFC, anode over right DLPFC. Was shown
to increase: a) lie responses [71]; b) attention and vigilance [ 72].

To summarize, tDCS intending to modulate activity of the same
target region (DLPFC) can interfere with a wide range of cognitive
functions, from relatively simple and low-level attentional pro-
cesses, to complex, higher-order functions such as decision-making
and working memory. The results also show that the effects of tDCS
are highly variable and may be dependent upon the task and
stimulation parameters, as illustrated in studies probing working
memory function. For instance, working memory was shown to be
enhanced by cathodal tDCS over the left DLPFC [29], anodal tDCS
over the left DLPFC [21,41—49]; and anodal tDCS over the right
DLPFC [48]. Working memory performance was also shown to be
decreased by cathodal tDCS over the left DLPFC [21], anodal tDCS
over the left DLPFC [36]; and tDCS over bilateral DLPFC (left anodal/
right cathodal: [62]). In general, the present review shows that 1)
studies probing the same cognitive function using similar tDCS
protocols can lead to opposite results; 2) a specific tDCS protocol
can induce cognitive effects over a wide variety of functions.

Discussion

The present review highlights the fact that tDCS over the pre-
frontal cortex can modify a wide range of behaviors from various
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domains. Due to the presence of many important variations in
experimental protocols that have a similar aim (for example
reducing excitability of the DLPFC to inhibit a specific cognitive
function), it is difficult at this point in time to confidently point to a
general pattern describing the effects of “prefrontal tDCS”. This is
further compounded by the fact that the physiological effects of
tDCS themselves are highly variable and dependent upon a variety
of individual characteristics.

Polarity

The highly variable effects of tDCS on cognition highlight the fact
that the idea of a polarity-specific effect of tDCS, as described
originally for the primary motor cortex, cannot be easily transposed
to non-motor areas [73]. Theoretically, tDCS increases excitability in
the area under the anode, thus facilitating performance on a spe-
cific task whereas the opposite effect would occur in the area under
the cathode, inhibiting behavior by decreasing cortical excitability.
However, the reality of tDCS effects on cognition is much more
complex [74]. For example, many studies report a facilitatory effect
associated with stimulation of areas under the cathode [74]. It has
been suggested that this effect may be due to the reduction of noise
in a specific network that enables facilitation of behavior [74].
Alternatively, it is possible that ‘cathodal tDCS’ inhibits a specific
function, which would consequently enhance a specific behavior
(e.g. faster reaction times).

In a recent study by Batsikadze and collaborators [75], 20 min of
cathodal tDCS over the primary motor cortex (reference electrode
over supraorbital area) was shown to produce an enhancement of
corticospinal excitability instead of the expected inhibition when
the intensity of the stimulation was doubled from 1 mA to 2 mA.
This suggests that different stimulation parameters can directly
affect the direction of tDCS-induced changes in cortical excitability.
In the studies that were included in the present review, the in-
tensity of stimulation ranged from 260 uA to 2 mA, stimulation
duration varied from 3 min to 30 min and electrode size ranged
from 8 mm diameter to 100 cm?. This inconsistency in the choice of
the parameters may contribute to the variable direction of the
cognitive changes induced by prefrontal tDCS.

State-dependency

Out of the 61 articles presented in this review, 38 used a so-
called “online” paradigm where the prefrontal cortex is modu-
lated by tDCS during a specific task. Conversely, 23 studies applied
tDCS before a specific task (“offline” paradigm). Both methods are
thought to rely on partially distinct mechanisms, which could
contribute to the apparent discrepancies among results [76].
Indeed, “offline” stimulation has been suggested to rely on modi-
fication of neuronal activity that lasts beyond the period of stimu-
lation, whereas “online” stimulation is believed to modulate a
specific network that is involved in the task [76].

Unlike TMS, tDCS does not induce a direct depolarization of
neurons but rather is thought to modulate the membrane perme-
ability of neurons leading to a change in the neuronal firing rate
[77]. Therefore, theoretically, tDCS should induce a depolarization
of the neurons that are the closest to firing, but that would not have
necessarily fired otherwise. In an “online” paradigm, the targeted
neuronal populations are already prone to discharge, given that
they are presumably part of a neural network thought to be
involved in the cognitive task under study [78]. Hence, the effects of
prefrontal tDCS are highly dependent on the state of the underlying
targeted network, a principle known as “state-dependency”
[76,79,80]. In other words, any tDCS-induced activity occurs in the
context of a baseline neural activity or a specific state [81]. This

state-dependent effect of neuromodulation on the motor region has
been taken into consideration from the very first motor studies
because the level of cortical excitability is measured before and
after the stimulation via MEPs. However, this is more challenging to
achieve when studying cognitive functions because many factors
can influence the initial state of a neuronal network, such as the
level of fatigue, knowledge of the task, pre-existent network con-
nectivity, etc. [80]. For example, a recent meta-analysis showed that
“cathodal tDCS” has a very minor effect on language function, which
could be explained by the strongly connected brain networks [74].
In other words, because of the high intensity of the firing rate of
these strongly interconnected neurons, the current induced by tDCS
might not be strong enough to significantly modulate network ac-
tivity and induce behavioral changes. A further example can be
drawn from a tDCS study on motor cortex where the induction of
motor imagery during the application of stimulation abolished the
excitatory effect of anodal tDCS [82]. In this case, the neurons are
already depolarized, which constrains the excitatory effects of the
stimulation, possibly by engaging metaplasticity mechanisms.

If the effect of tDCS is dependent on the state of the networks, it
must thus also be dependent on the specific task the subjects are
engaged in. As a result, the targeted cognitive function has a higher
probability of being modulated, and online and offline tDCS pro-
tocol would be expected to lead to different results. Similarly, the
instructions given to study participants prior to the tDCS would be
predicted to exert significant effects onto the results, and thus need
to be scripted and controlled with care. Further investigation and
leveraging of the “state-dependent” effect could benefit tDCS pre-
frontal studies in order to better specify the effects of stimulation of
a targeted network or function. To date, very few studies have taken
this important factor into consideration: within the articles
included in the present review, only five mentioned the impact of
state-dependency.

Inter-subject variations

Two recent large-scale prospective studies evaluated the inter-
subject variation of tDCS effects on primary motor cortex excit-
ability and showed high variability in the participants’ response to
stimulation [5,83]. Results from Lopez-Alonso and colleagues [5]
showed that only 45% of participants respond to “anodal tDCS”
over the target area. Similarly, Wiethoff and colleagues [83] showed
a response ratio of 74:26 (facilitation: inhibition) after anodal
stimulation of the target area and a ratio of 60:40 (facilitation: in-
hibition) after cathodal stimulation of the target area. As mentioned
previously, there exists a large number of stimulation parameters
that can modulate the physiologic response to tDCS. Chief among
them are electrode size, stimulation duration and stimulation in-
tensity. As can be seen from Table 1, these parameters vary widely
between studies and considerably limit the generalizability and
comparison of results between studies. Similarly, participant char-
acteristics are also important factors that contribute to the vari-
ability observed in tDCS studies of prefrontal cortex. Participant
head size and shape, as well as amount of fat tissue and fiber
orientation all contribute to the physiologic effects of tDCS. When
taken together, the presence of these confounding factors strongly
suggest that the level of induced current in a specific brain area can
vary quite extensively. It is therefore not surprising that the
behavioral response to prefrontal tDCS is also subject to large
hetererogeneity. All of these factors are compounded by the fact
that sample sizes are often relatively small in tDCS studies of pre-
frontal cortex. A study of cathodal and anodal effects on motor
cortex excitability suggested that based on acquired data in healthy
individuals, a minimum of 87 participants per group would be
needed to achieve a sufficient level of power and confidence to
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detect a significant difference between patients and healthy sub-
jects [83]. Although this seems to be an extreme case, it should be
noted that the mean sample size for the studies included in the
present review was only 21 participants.

Conclusion

When using tDCS over the DLPFC with a specific set of param-
eters, it is possible to modulate a specific cognitive function.
However, as highlighted in this review, a given stimulation protocol
may simultaneously modulate various other cognitive functions in
similar or opposite directions (i.e. facilitation or inhibition). This
implies that any effect of prefrontal tDCS on a given task is probably
associated with the extensive modulation of a wide range of mul-
tiple cognitive functions. This, in turn, makes it hard to attribute an
observed effect on a specific task to a single mechanism, at least
with traditional stimulation protocols. When differing participant
characteristics, stimulation parameters and state-dependency ef-
fects are also taken into consideration, it becomes clear that more
neurobiologic insights of the effects of tDCS are needed to properly
interpret the results of studies and appropriately conclude brain-
behavior relations.

In conclusion, refined protocols that take into account the
numerous caveats associated with tDCS and a better standardiza-
tion of stimulation protocols are needed to improve study quality.
One possible way to reduce uncertainty is to monitor the brain
impact of tDCS separately and independently of behavioral and
cognitive effects. Techniques such as EEG (e.g. Ref. [84]), TMS-EEG
(e.g. Ref. [85]), magnetic resonance spectroscopy (e.g. Ref. [86]),
functional magnetic resonance imaging (e.g. Ref. [87]) and
modeling of induced currents (e.g. Ref. [88]) have all been shown to
be effective in characterizing the physiologic effects of tDCS.
Relating behavioral and cognitive effects to the measured brain
impact (induced current, physiologic effect) would offer a signifi-
cant advance for the interpretation of tDCS data.
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