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Abstract.10

Background: Alzheimer’s disease (AD) and type 2 diabetes (T2DM) are common causes of cognitive decline among older
adults and share strong epidemiological links. Distinct patterns of cortical atrophy are observed in with AD and T2DM, but
robust comparisons between structure-function relationships across these two disease states are lacking.
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Objective: To compare how atrophy within distributed brain networks is related to cognition across a spectrum of cognitive
aging.
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Methods: The relationship between structural MRI changes and cognition was studied in 22 mild-to-moderate AD, 28 T2DM,
and 27 healthy participants. Cortical thickness measurements were obtained from networks of interest (NOIs) matching the
limbic, default, and frontoparietal resting-state networks. Composite cognitive scores capturing domains of global cognition,
memory, and executive function were created. Associations between cognitive scores and the NOIs were assessed using
linear regression, with age as a covariate. Within-network General Linear Model (GLM) analysis was run in Freesurfer 6.0
to visualize differences in patterns of cortical atrophy related to cognitive function in each group. A secondary analysis
examined hemispheric differences in each group.

16

17

18

19

20

21

22

Results: Across all groups, cortical atrophy within the limbic NOI was significantly correlated with Global Cognition
(p = 0.009) and Memory Composite (p = 0.002). Within-network GLM analysis and hemispheric analysis revealed qualita-
tively different patterns of atrophy contributing to cognitive dysfunction between AD and T2DM.

23

24

25

Conclusion: Brain network atrophy is related to cognitive function across AD, T2DM, and healthy participants. Differences
in cortical atrophy patterns were seen between AD and T2DM, highlighting neuropathological differences.
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INTRODUCTION29

The number of people aged 65 and older is30

expected to reach one billion worldwide by 203031
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[1, 2]. Aging is the strongest risk factor for neu- 32

rodegenerative disease including Alzheimer’s disease 33

(AD). Atrophy patterns are closely tied to cogni- 34

tive function in dementia [3], and probing these 35

structure-function relationships in AD has diagnostic, 36

prognostic, and interventional utility [4–6]. Neu- 37

roimaging studies in AD have shown a characteristic 38

pattern of cortical thinning associated with disease 39

severity [7]: impairments in learning tend to be 40
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associated with greater atrophy of the temporal pole,41

while hippocampal and medial temporal lobe atro-42

phy are more predictive of impairments with delayed43

recall and recognition [8]. In patients with mild cog-44

nitive impairment (MCI), cortical atrophy measures45

can predict risk of progression to AD-type of demen-46

tia, with cortical thickness as the strongest individual47

prognostic marker [9].48

Structure-function relationships in other forms49

of pathological aging are less thoroughly charac-50

terized. In older adults, type 2 diabetes (T2DM)51

has been associated with declines in processing52

speed, attention, executive function, and free mem-53

ory recall [10]. Older adults with T2DM show54

global atrophy and increased burden of microvas-55

cular disease [11, 12]. Brain atrophy in T2DM is56

correlated with disease severity and duration, and57

may reflect additional neurodegenerative mecha-58

nisms aside from microvascular disease [12, 13].59

While T2DM is often associated with vascular60

dementia (VaD), it is also linked to an almost twofold61

increased risk of AD, likely reflecting a complex62

interplay between vascular, neurodegenerative, and63

neurotoxic factors [14]. In order to identify neu-64

roimaging targets for future intervention in T2DM,65

and determine which patients are at highest risk of66

cognitive decline, it would be useful to know whether67

T2DM exhibits similar structure-function relation-68

ships to AD. However, prior studies of cortical69

atrophy and cognition in AD and T2DM have focused70

on single disease states, examined separate disease-71

specific regions of interest, or used atrophy measures72

other than cortical thickness [15, 16], limiting73

generalizability.74

Measuring cortical thickness within functionally75

connected brain networks of interest (NOIs) repre-76

sents a middle-ground between whole-brain analysis77

and localized region-of-interest methods, offering a78

potentially powerful tool to quantify atrophy within79

distributed brain networks. Resting state functional80

connectivity MRI (rs-fcMRI) can be used to parcel-81

late the brain into functionally connected but spatially82

separate brain regions showing correlated activity83

[17]. Recent studies have suggest that these intrin-84

sic brain networks play a role in the distribution,85

and possibly the pathogenesis, of proteins involved86

in neurodegenerative diseases [18]. In AD, patterns87

of tau deposition follow functionally connected brain88

networks, and greater pathology within these tau-89

networks is related to disease progression on Braak90

staging [19]. Prior studies have used an NOI approach91

to compare cortical atrophy, amyloid-� (A�) depo-92

sition, and tau distribution in AD [20]. The present 93

study extends the NOI approach one step further, 94

using NOIs to compare the relationship between cor- 95

tical atrophy and cognition across a spectrum of 96

cognitive aging. 97

This study used a network-based approach to ana- 98

lyze structure-function relationships between cortical 99

thickness and cognitive function in T2DM and AD 100

participants aged 50 and older, compared to healthy, 101

cognitively-intact older adults. The study tested the 102

hypothesis that declines in global cognition, memory, 103

and executive function would be associated with atro- 104

phy in distributed brain NOIs across different forms 105

of cognitive aging. Furthermore, the study tested the 106

hypothesis that the pattern of atrophy and its rela- 107

tionship to cognitive function would vary between 108

T2DM and AD participants, reflecting differences in 109

underlying brain pathology. 110

MATERIALS AND METHODS 111

Participants 112

Neuroimaging and neuropsychological data from 113

77 adult study participants aged 50 and older who 114

participated in research from 2011 to 2015 at 115

the Berenson-Allen Center for Noninvasive Brain 116

Stimulation at Beth Israel Deaconess Medical Cen- 117

ter (BIDMC) were included in this retrospective 118

cross-sectional study. The study was approved by 119

the BIDMC institutional Review Board, and all 120

study participants provided written informed consent 121

upon enrollment consistent with the Declaration of 122

Helsinki. Study participants comprised three groups: 123

22 AD, 28 T2DM, and 27 healthy controls (HC). 124

Inclusion criteria in the AD group were a clinical 125

diagnosis of probable mild-to-moderate AD accord- 126

ing to DSM-V/NINCDS-ADRDA criteria [21], a 127

Clinical Dementia Rating Scale (CDR) of 1, and 128

a Mini-Mental Status Examination (MMSE) rang- 129

ing from 18–24. Inclusion criteria for the T2DM 130

participants included a clinical diagnosis of T2DM, 131

relatively good glucose control with an A1c ≤ 10%, 132

and normal cognition (MMSE ≥ 27). HC participants 133

were required to have normal cognition (MMSE ≥ 134

27) and be non-diabetic (A1c < 6.2). All participants 135

underwent equivalent testing, including a standard- 136

ized neurological exam, medical history review, 137

formal neuropsychological testing, and a structural 138

MRI scan. Participants were excluded if they had 139

unstable medical conditions, neuropsychiatric con- 140

ditions, or premorbid IQ below 80 as measured by 141
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the age-adjusted Wechsler Test of Adult Reading (W-142

TAR).143

Neuropsychological testing144

Neuropsychological memory testing was per-145

formed by a trained psychometrist. Testing included146

the MMSE and Geriatric Depression Scale (GDS;147

15-item) drawn from the National Alzheimer’s Coor-148

dination Center’s Uniform Data Set version 1.1 [22].149

The Trail Making Test (TMT) was administered,150

and the time difference in seconds that it took each151

subject to complete TMT B versus TMT A was152

calculated (TMTB-A). The Digit Symbol Substitu-153

tion Test (DSST; number correct in 90 seconds),154

Digit Span Backwards Length (DSB Length; longest155

digit span), Logical Memory Story (LMS) Story-A156

were drawn from the Wechsler Memory Scale-157

Revised. The LMS included an immediate story158

recall score (LMS Immediate Recall) and a delayed159

30-minute recall score (LMS Delayed Recall) with-160

out cueing. Additionally, the Alzheimer’s Disease161

Assessment Scale-Cognitive Subscale was adminis-162

tered, and the total score (ADAS-Cog Total; 70 item),163

word list immediate recall subscore (ADAS-Cog164

Immediate Recall), and word list delayed recognition165

subscore (ADAS-Cog Delayed Recognition) were166

analyzed independently [23]. The Rey Auditory Ver-167

bal Learning Test (RAVLT) was also administered,168

and sub-scores of percent correct responses analyzed169

included a percent correct during initial learning170

(RAVLT Immediate Recall), 20 minute delayed recall171

(RAVLT Delayed Recall), and delayed recognition172

(RAVLT Delayed Recognition) [24, 25]. Neuropsy-173

chological scores were not obtained for ADAS-Cog174

Recall and ADAS-Cog Recognition in one AD partic-175

ipant and one HC, for RAVLT Delayed Recognition176

in one T2DM participant, for the DSST in one AD177

participant, and for TMTB-A in one T2DM participant178

and six AD participants (four of whom were unable179

to complete either TMT A or TMT B). These partic-180

ipants were excluded from analysis of those missing181

measures alone.182

For each neuropsychological measure, z-scores183

were calculated by subtracting each individual score184

from the mean score of the all three groups and divid-185

ing by the standard deviation across all three groups.186

Scores of the TMTB-A, ADAS-Cog Total, ADAS-187

Cog Immediate Recall, and ADAS-Cog Delayed188

Recognition were inverted so that higher scores189

reflected better performance across all tests. Fol-190

lowing an approach from the Alzheimer’s Disease191

Neuroimaging Initiative, composite scores were com- 192

puted by averaging together z-scores from individual 193

tests so that atrophy patterns could be related to cog- 194

nitive domains more generally [26, 27]. A Memory 195

Composite was created by from the RAVLT Immedi- 196

ate Recall, RAVLT Delayed Recall, RAVLT Delayed 197

Recognition, LMS Immediate Recall, LMS Delayed 198

Recall, ADAS-Cog Recall, and ADAS-Cog Recog- 199

nition. An Executive Composite was computed by 200

averaging the z-scores of DSB Length, TMTB-A, and 201

DSST. Global Cognition was measured using the 202

ADAS-Cog Total, which is already a composite score 203

of multiple subtests. 204

MRI imaging data 205

A T1-weighted anatomical magnetic resonance 206

imaging scan was obtained in all participants on 207

a 3T scanner (GE Healthcare, Ltd., UK) using 208

a 3D spoiled gradient echo sequence: 162 axial- 209

oriented slices for whole-brain coverage; 240-mm 210

isotropic field-of-view; 0.937-mm × 0.937-mm × 1- 211

mm native resolution; flip angle = 15◦; TE/TR 212

≥ 2.9/6.9 ms; duration ≥ 432 s. T1-weighted 213

anatomical MRIs were analyzed with Freesurfer 214

6.0 (documented and freely available online at 215

http://surfer.nmr.mgh.harvard.edu/). The technical 216

details of these procedures are described in prior 217

publications [28–41]. To ensure overall accuracy of 218

segmentations and parcellations, all reconstructions 219

were subjected to a rigorous data quality control 220

process: a trained rater reviewed and manually cor- 221

rected reconstructions when necessary, which were 222

reviewed by an independent rater. 223

In addition to thickness of neocortical areas, hip- 224

pocampal volume was calculated in Freesurfer and 225

corrected for individual head size by dividing by total 226

intracranial volume. One T2DM participant with an 227

intracranial volume greater than two standard devia- 228

tions above the mean was excluded from this analysis 229

alone. Normed hippocampal volumes were then con- 230

verted to z-scores over all three groups (following the 231

same procedure as the neuropsychological scores) in 232

order to compare atrophy between groups. 233

Measures of network atrophy 234

Atrophy across distributed brain networks, referred 235

to herein as “network atrophy,” was defined using 236

gray matter cortical thickness measurements within 237

predefined NOIs. NOIs were derived from a 1000- 238

subject group average rs-fcMRI analysis from Yeo 239

http://surfer.nmr.mgh.harvard.edu/
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and colleagues [17]. Cortical thickness was selected240

as the primary measure of atrophy because it is241

robust to head size and gender bias [42], and shows242

promise as a biomarker for disease progression from243

MCI to AD [9]. A previous study in AD used an244

equivalent rs-fcMRI parcellation to compare cortical245

atrophy, neurodegenerative protein deposition, and246

brain metabolism across cortical NOIs, but did not247

examine associations with cognition [20]. Another248

study in healthy adults found a relationship between249

NOI-based cortical thickness and executive func-250

tion, but used a different technique to define NOIs,251

and did not examine memory function [43]. To our252

knowledge, this technique has not been previously253

used to make comparisons across different disease254

states.255

NOIs were selected to encompass the limbic,256

default, and frontoparietal networks as defined by257

group-level functional connectivity maps from Yeo258

and colleagues [17] (Supplementary Figure 1). The259

limbic and default networks were chosen because260

these networks encompass brain regions with high261

levels of neuropathology on Braak staging [44],262

and include the entorhinal cortex, parahippocampal263

gyrus, and temporal pole which are implicated in264

memory encoding and retrieval [45–49]. The fron-265

toparietal network was chosen because it shows high266

A� distribution and hypometabolism in AD [20],267

and is thought to play an important role in executive268

function [43, 50, 51]. Average cortical thickness (in269

mm) was assessed within each NOI bilaterally. Given270

the potential for functional specialization and hemi-271

spheric asymmetrical atrophy patterns, the left and272

right hemispheres of each NOI were also measured273

for use in a secondary analysis.274

Statistical analysis275

Statistical analyses were performed using JMP Pro276

13.0 (SAS Institute Inc., Cary, NC) and Stata 14.2277

(StataCorp, College Station, TX). Significance was278

determined with a two-tailed 95% confidence interval279

(� = 0.05). Baseline characteristics were compared to280

assess for group differences. In the primary anal-281

ysis, linear regression was used to determine the282

relationship between cortical thickness and cogni-283

tive measures across all three groups. To visualize284

the within-network atrophy patterns in each group285

contributing to structure-function relationships, a286

General Linear Model (GLM) analysis was run using287

Freesurfer 6.0. Finally, a secondary hemispheric anal-288

ysis was preformed to using linear regression to test289

if there was right/left asymmetry contributing to the 290

relationship between network atrophy and cognition. 291

Baseline characteristics 292

Demographics and cognitive scores from some 293

T2DM and HC participants have been previously 294

reported [52]. Baseline characteristics including 295

demographics, atrophy measures, and z-scored neu- 296

ropsychological measures were tested for significant 297

differences across all three groups. Fischer’s exact 298

test was used for dichotomous variables, and one- 299

way analysis of variance (ANOVA) was used for 300

continuous variables. Tukey’s Honestly Significant 301

Difference (HSD) was used to further test the relation- 302

ships between each group. Since age was different 303

between the groups (see Results), and was expected 304

to relate to both brain atrophy and cognition, it was 305

added as a covariate to all subsequent between-group 306

analyses. 307

To assure that our dataset was consistent with prior 308

literature [53], the relationship between right and left 309

hippocampal volumes and RAVLT Delayed Recogni- 310

tion were tested in separate linear regression analyses 311

for each group, with age as a covariate. For hip- 312

pocampal volume analysis, uncorrected p-values are 313

reported, and significance is indicated after correction 314

using the Benjamini-Hochberg procedure for control- 315

ling the False Discovery Rate (FDR) with a global 316

� = 0.05 [54]. 317

Linear regression 318

Multiple linear regression analyses were pre- 319

formed to assess the relationship between cognitive 320

function and network atrophy (with each NOI sepa- 321

rately to avoid collinearity) as well as the influence 322

of participant age and diagnosis. Global Cogni- 323

tion, Memory Composite, and Executive Composite 324

scores were entered as dependent variables into a 325

fixed-effects linear model with the main independent 326

factors of diagnosis (AD, T2DM, HC), thickness, 327

the diagnosis*thickness interaction term, and age 328

as a covariate. Uncorrected p-values are reported, 329

and significance is indicated after correction using 330

the Benjamini-Hochberg procedure for FDR with a 331

global � = 0.05 [54]. 332

GLM analysis 333

A GLM analysis using a familywise error rate 334

of 0.05 was run in Freesurfer 6.0 for each mem- 335

ory test associated with a NOI atrophy in the AD 336

and T2DM groups. GLM analysis was restricted to 337

vertices within the relevant network of interest to 338
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identify regions within the network that were sig-339

nificantly associated with that neuropsychological340

measure, with age as a covariate.341

Hemispheric analysis342

Separate linear regression analyses were pre-343

formed using cortical thicknesses within right and344

left hemisphere NOIs. Linear regression was used345

to test the associations of memory tests with NOI346

thickness and hippocampal volumes, with age as a347

covariate. Only uncorrected p-values are reported in348

the secondary analysis.349

RESULTS350

Baseline characteristics351

AD participants were significantly older than the352

HC group, and had higher depression scores on the353

GDS (Table 1). The AD group showed atrophy within354

all NOIs and lower corrected hippocampal volume355

compared to HC and T2DM. No significant differ- 356

ences in network thickness or corrected hippocampal 357

volume were seen between T2DM and HC groups. 358

AD participants scored significantly worse on all cog- 359

nitive tests compared to HC, and T2DM group scored 360

in the intermediate range between the AD and HC on 361

multiple measures. 362

Left hippocampal volume was associated with 363

RAVLT Delayed Recognition in AD (p = 0.0029) and 364

T2DM (p = 0.019). After correction with FDR, only 365

the association in AD remained significant. 366

Multiple linear regression 367

None of the analyses yielded a significant diagno- 368

sis*thickness interaction (p values > 0.09), indication 369

no effect modification. Therefore, the models were 370

rerun without the interaction term. Linear regres- 371

sion relationships between cortical thickness and 372

composite cognitive scores are shown in Fig. 1. 373

Fig. 1. NOI thickness and cognitive composite scores. Within each NOI, linear regression between cortical thickness and cognitive composite
scores are shown. Models which were significant based on uncorrected p-values are marked with a black box. (a) There is a significant
relationship between cortical thickness in the limbic NOI and Global Cognition, (d) between cortical thickness in the limbic NOI and
Memory Composite, and (i) between cortical thickness in the frontoparietal NOI and Executive Composite.
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Table 1
Baseline characteristics

HC T2DM AD Significance Tests
df F ratio p-value Tukey’s HSD

Number (#) 27 28 22
Female # (%) 12 (44%) 13 (46%) 13 (59%) N = 77, df = 2, 2-tailed p = 0.578; Fisher’s Exact Test
Age (y) 61.7 ± 1.6 66.3 ± 1.5 69.6 ± 1.7 2,74 5.96 0.004 HC<AD
MMSE (#/30) 29.4 ± 0.3 29.0 ± 0.3 21.8 ± 0.3 2,74 196.90 <0.001 AD<HC, T2DM
GDS (#/15) 0.5 ± 0.3 1.2 ± 0.3 2.4 ± 0.4 2,74 7.31 0.001 HC<AD
Education (y) 15.8 ± 0.6 15.5 ± 0.5 16.6 ± 0.6 2,74 0.86 0.429
Premorbid IQ (W-TAR) 113.6 ± 2.4 112.2 ± 2.4 108.2 ± 2.7 2,74 1.19 0.311
Network ROI thicknesses (mm)
Limbic NOI Thickness 2.5 ± 0.03 2.5 ± 0.03 2.4 ± 0.03 2,74 11.70 <0.001 AD<HC, T2DM
Default NOI Thickness 2.4 ± 0.02 2.4 ± 0.02 2.3 ± 0.02 2,74 15.60 <0.001 AD<HC, T2DM
Frontoparietal NOI Thickness 2.3 ± 0.02 2.2 ± 0.02 2.1 ± 0.02 2,74 17.90 <0.001 AD<HC, T2DM
Hippocampal Volume (z-scores)
RH hippocampal volume/eTIV 0.4 ± 0.2 0.2 ± 0.2 –0.8 ± 0.2 2,74 15.50 <0.001 AD<HC, T2DM
LH hippocampal volume/eTIV 0.4 ± 0.2 0.3 ± 0.2 –0.9 ± 0.2 2,74 20.00 <0.001 AD<HC, T2DM
Global Cognition (z-scores)
ADAS-Cog Total (inverse) 0.6 ± 0.1 0.4 ± 0.1 –1.2 ± 0.1 2,74 75.30 <0.001 AD<HC, T2DM
Memory Composite (z-scores) 0.7 ± 0.1 0.2 ± 0.1 –1.1 ± 0.1 2,74 85.11 <0.001 AD<T2DM<HC
RAVLT Immediate Recall 0.7 ± 0.1 0.2 ± 0.1 –1.2 ± 0.1 2,74 65.10 <0.001 AD<T2DM<HC
RAVLT Delayed Recall 0.6 ± 0.1 0.3 ± 0.1 –1.1 ± 0.1 2,74 43.00 <0.001 AD<HC, T2DM
RAVLT Delayed Recognition 0.6 ± 0.1 0.2 ± 0.1 –1.0 ± 0.2 2,73 30.30 <0.001 AD<HC, T2DM
LMS Immediate Recall 0.8 ± 0.1 0.05 ± 0.1 –1.0 ± 0.2 2,74 36.08 <0.001 AD<T2DM<HC
LMS Delayed Recall 0.7 ± 0.1 0.1 ± 0.1 –1.0 ± 0.2 2,74 33.10 <0.001 AD<T2DM<HC
ADAS-Cog Immediate Recall (inverse) 0.8 ± 0.1 0.2 ± 0.1 –1.2 ± 0.1 2,73 66.60 <0.001 AD<T2DM<HC
ADAS-Cog Delayed Recognition (inverse) 0.4 ± 0.2 0.3 ± 0.2 –1.0 ± 0.2 2,73 19.80 <0.001 AD<HC, T2DM
Executive Composite (z-scores) 0.6 ± 0.1 0.2 ± 0.1 –1.2 ± 0.1 2,74 60.20 <0.001 AD<T2DM<HC
DSB Length 0.5 ± 0.2 0.05 ± 0.2 –0.7 ± 0.2 2,74 12.10 <0.001 AD<HC, T2DM
DSST 0.7 ± 0.1 0.2 ± 0.1 –1.2 ± 0.1 2,73 59.50 <0.001 AD<T2DM<HC
TMT B-A (inverse) 0.5 ± 0.1 0.3 ± 0.1 –1.4 ± 0.2 2,67 50.00 <0.001 AD<HC, T2DM

Gender proportions are shown using Fisher’s exact test. All other results are presented as Mean ± Std error generated from ANOVA.
Significant values with p < 0.05 are shown in bold, and are further characterized using Tukey’s HSD to compare means between all three
groups.

Limbic NOI374

There was a significant main effect of cortical375

thickness in the linear models for Global Cognition376

(p = 0.009) and Memory Composite (p = 0.002), indi-377

cating that limbic network atrophy was related to378

global cognition and memory function independent379

of group and controlling for age. After adjustment for380

multiple comparisons with FDR, both relationships381

remained significant.382

Default NOI383

There were no significant associations between384

cortical thickness within the default NOI and385

Global Cognition, Memory Composite, or Executive386

Composite.387

Frontoparietal NOI388

For Executive Composite, the linear model showed389

a main effect of cortical thickness (p = 0.033),390

indicating that frontoparietal network atrophy was 391

related to memory function independent of group and 392

controlling for age. This relationship was not signifi- 393

cant after adjustment for multiple comparisons using 394

FDR. 395

GLM analysis 396

Within-network GLM analysis relating cortical 397

thickness in the limbic NOI with cognitive scores 398

are shown for Global Cognition (Supplementary 399

Figure 2) and Memory Composite (Supplemen- 400

tary Figure 3). In the AD group, cortical thickness 401

within the medial temporal lobes was associated with 402

Global Cognition and Memory Composite, with a left 403

hemisphere predominance. In T2DM, cortical thick- 404

ness in the anterior temporal, inferior temporal, and 405

orbitofrontal cortex showed associations with both 406

Global Cognition and Memory Composite. Supple- 407

mentary Figure 4 shows associations between cortical 408

thickness within the frontoparietal NOI and Exec- 409

utive Composite. In AD, cortical thickness in the 410
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superior frontal, parietal, and posterior temporal cor-411

tex was associated with Executive Composite. In412

T2DM, associations between cortical thickness and413

Executive composite were driven by anterior regions414

of the frontoparietal NOI, including regions of the415

left dorsolateral prefrontal cortex.416

Secondary hemispheric analysis417

Supplementary Figure 5 shows associations418

between right and left NOI thickness measures and419

neuropsychological tests in each group. p-values for420

the supplementary hemispheric analysis were not421

corrected for multiple comparisons and should be422

interpreted accordingly. Measures of global decline423

in AD were associated with atrophy in both the left424

limbic network and left default network. Structure-425

function relationships between limbic NOI thickness426

and memory tests showed a strong left hemisphere427

predominance. Furthermore, there was a double dis-428

sociation between cortical thickness and cognition,429

with limbic network atrophy associated with memory430

function and frontoparietal network atrophy associ-431

ated with executive function, which was seen only432

in the AD group. In T2DM thickness within the433

default NOI showed associations with both Memory434

Composite and Executive Composite. In HC, atrophy435

within all three networks was associated with RAVLT436

Delayed Recall.437

DISCUSSION438

The present study employed a relatively novel439

network-based approach to examine structure-440

function relationships impacting cognition across441

the spectrum from healthy to pathological cognitive442

aging. The primary hypothesis, that atrophy within443

distributed brain networks would be associated with444

declines in cognition across AD, T2DM, and HC, was445

upheld. Qualitative differences in structure-function446

relationships within AD and T2DM were observed447

following exploratory within-network GLM and448

hemispheric analyses. This suggests that different449

patterns of atrophy drive structure-function rela-450

tionships in T2DM and AD, reflecting separable451

neurobiological substrates across different forms of452

pathological aging. Understanding these differences453

may help target future therapies aimed at slowing454

cognitive decline.455

The limbic network contains anterior medial456

temporal regions including the entorhinal cortex,457

implicated in memory consolidation and retrieval,458

as well as the temporal pole which is important in 459

semantic memory encoding. In structural MRI stud- 460

ies in AD, gray matter atrophy is greatest in the 461

limbic network, followed by the default network, 462

with relative sparing of the frontoparietal network 463

[20]. Additionally, the limbic network experiences 464

significant hypometabolism on FDG-PET, but has 465

relatively lower A� plaque burden compared to other 466

networks [20]. The present study adds to existing lit- 467

erature by correlating limbic network atrophy with 468

global cognition and memory across AD, T2DM, 469

and HC. Left lateralization of the findings in AD 470

may be related to the semantic demands of verbal 471

learning tests. The study also replicated the pre- 472

viously well-described association between medial 473

temporal atrophy and recognition memory in AD 474

[8, 55]. The limbic network’s structural relevance 475

is supported by both seed-based fMRI methods and 476

white matter tractography studies [56, 57]. Sub- 477

regions of the temporal pole are involved in separable 478

large-scale brain networks, suggesting that this area 479

represent a multimodal “hub” integrating sensory, 480

language, and limbic information [56]. The present 481

study’s finding of strong structure-function rela- 482

tionships within the limbic network suggests that 483

breakdown in multimodal “hubs” may play a key 484

role in cognitive decline, in AD and as well as other 485

forms of cognitive aging. However, direct compar- 486

isons with rs-fcMRI literature are limited due to 487

concerns that the orbitofrontal and temporal pole are 488

highly prone to artefactual signal on rs-fcMRI [58]. 489

Findings from the present study implicating the lim- 490

bic network should be interpreted with the caveat 491

that the exact boundaries of this network may show 492

modality-specific variations. 493

The default network is intrinsically present in the 494

brain at rest, and deactivated by tasks requiring sus- 495

tained attention [59]. Impairments in default network 496

connectivity are thought to develop early in AD 497

pathology, and can be seen even in asymptomatic 498

individuals at high risk of AD, including patients with 499

autosomal dominant AD mutations or in healthy older 500

adults with A� deposition [60, 61]. In T2DM, aber- 501

rant functional connectivity in the default network is 502

associated with both declines in executive function on 503

a verbal fluency test and with increased insulin resis- 504

tance [62]. Findings from the present study found 505

no significant associations between default network 506

atrophy and cognition. This contrasts with rs-fcMRI 507

literature showing impairment in functional connec- 508

tivity within the default network in both AD and 509

T2DM [63, 64], and suggests a dissociation between 510
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functional and structural neuroimaging biomarkers.511

One hypothesis is that, while abnormal connectiv-512

ity and atrophy within the default network may play513

an important role in cognitive decline during the514

preclinical AD, limbic and frontoparietal network515

atrophy may drive structure-function relationships516

during later disease stages when atrophy and517

cognitive decline are more advanced.518

The frontoparietal network is implicated in tasks519

requiring complex attentional control in healthy520

older adults [43, 51]. In AD, the frontoparietal521

network shows high A� deposition and FDG-522

PET hypometabolism, but less atrophy compared523

to the limbic and default networks [20]. AD also524

shows increased functional connectivity in frontally-525

connected distributed networks, with the amount of526

increase related to executive function performance527

[65]. One possibility is that increased functional con-528

nectivity in the frontoparietal network in AD may529

be related to a compensatory strategy in the pres-530

ence of default network dysfunction [66]. The present531

study adds the finding that atrophy frontoparietal532

network was significantly associated with execu-533

tive function in both AD and T2DM. Overall, the534

structure-function relationship within the frontopari-535

etal network suggests that network-based cortical536

atrophy and resting-state functional connectivity may537

have separable effects on cognition, and should be538

examined independently.539

In the primary model, there was no signifi-540

cant interaction term of diagnosis*thickness. Thus,541

overall structure-function relationships were not sig-542

nificantly different between the groups, despite the543

significantly greater amount of atrophy in AD com-544

pared to HC and T2DM. This supports the idea545

that examining network atrophy may be a useful546

tool for comparing structure-function relationships547

among different patient populations. Additionally,548

within-network GLM and hemispheric analyses did549

reveal qualitative differences in the atrophy pattern550

driving the associations among the three groups.551

These group-specific differences in atrophy patterns552

likely reflect different underlying neuropathological553

processes in different disease states.554

The mechanisms of neurotoxicity in T2DM and555

AD are complex and overlapping, and individual556

patients often present with more than one pathology.557

In AD animal models, elements of the neurodegen-558

erative cascade include oligomeric A� [67], tau [44],559

APOE [68], lipid metabolism [69, 70], and altered560

synaptic plasticity [71, 72]. Insulin resistance is a fur-561

ther neurodegenerative mechanism which is common562

to both T2DM and AD. Impaired insulin signal- 563

ing may have multiple downstream effects including 564

alterations in glucose metabolism, increased tau 565

accumulation, and oxidative stress [73]. In a prospec- 566

tive study of non-demented adults, insulin resistance 567

at baseline predicted subsequent atrophy of the hip- 568

pocampus and parahippocampal gyrus and impaired 569

performance on RAVLT encoding trials [13]. In 570

healthy adults, hyperglycemia is associated with 571

cortical thinning in AD-associated regions includ- 572

ing the parahippocampal gyrus and temporal pole 573

[74]. Furthermore, in observational studies, T2DM 574

almost doubled the risk of developing AD [75]. 575

Even in non-diabetic AD patients, there is impaired 576

insulin and IGF-1 sensitivity in the hippocampus, 577

and reduced insulin responses are associated with 578

impaired episodic memory [76]. The present study 579

adds the finding that cortical atrophy patterns drive 580

structure-function relationships in both T2DM and 581

AD, and that the effect is not significantly differ- 582

ent by group. Qualitative differences seen on GLM 583

and secondary analysis in each group are likely to 584

be the product of separable degenerative processes, 585

which converge to cause atrophy in distributed brain 586

networks. Comparing brain structure-function rela- 587

tionships in T2DM and AD can highlight neurotoxic 588

mechanisms leading to the increased risk of demen- 589

tia in T2DM, improving prognostication in patients at 590

risk of AD [77]. Since insulin resistance is amenable 591

to multiple medication and lifestyle medications, it 592

represents a promising therapeutic target to promote 593

healthy cognitive aging [78]. 594

Understanding the structure-function relationships 595

which are most relevant in different forms of patho- 596

logical aging may help target future therapies aimed 597

at slowing cognitive decline. Since many older 598

adults have more than one comorbid pathology 599

affecting cognition, any effective treatment target- 600

ing pathological aging will require a high degree 601

of individualization. Knowledge of network-based 602

structure-function relationships can facilitate devel- 603

opment of investigational therapies aimed at slowing 604

cognitive decline and prevention onset of demen- 605

tia, including both lifestyle and neuromodulatory 606

approaches. For example, in our hemispheric anal- 607

ysis, the LMS Immediate Recall test was impaired in 608

both T2DM and AD, and was associated with NOI 609

atrophy, yet the association was driven by distinct 610

networks and showed different hemispheric lateral- 611

ization. In the future, this knowledge could be applied 612

to an individual patient’s structural imaging and 613

cognitive profile, and used to target network-based 614
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therapies such as non-invasive brain stimulation615

(NBS). Neuromodulatory treatments are currently616

being investigated in AD [79, 80]. However, it is not617

yet known which brain regions or cognitive functions618

would be most useful to target in patients with other619

forms of pathological aging. Additionally, it is pos-620

sible that combing NBS with interventions aimed at621

reducing insulin resistance such as diet and exercise622

might be more effective in treating certain popula-623

tions, including AD patients with concurrent T2DM624

or pre-diabetes. These questions require further sys-625

temic study.626

Strengths of this study include a well-characterized627

study population with in-depth neuropsychological628

testing and neuroimaging among three groups on629

a spectrum of cognitive aging. This study was the630

first of its kind to use a network-based approach631

to make inferences about structure-function relation-632

ships among different forms of pathological aging.633

Our method demonstrated differences in patterns of634

network atrophy associated with cognitive decline in635

AD and T2DM, despite different severity of cortical636

atrophy and cognitive deficits in each group.637

There are factors which may limit the generaliz-638

ability of our findings. Our study had a relatively639

small sample size in each group, which limited the640

power of our secondary analyses. Our hemispheric641

analysis did not replicate structure-function relation-642

ships in HC seen in other studies, which had larger643

numbers of participants [43, 50]. Follow up studies in644

larger datasets would be required to confirm the hemi-645

spheric differences, and further elucidate patterns of646

atrophy which are driving structure-function rela-647

tionships on GLM. Additionally, there was limited648

information about diabetes status in the AD cohort,649

and our HC cohort did not have CSF or PET A�650

biomarkers to rule out pre-symptomatic AD. How-651

ever, since any overlap in pathology would have been652

expected to make group differences less robust, we653

do not think this significantly impacted the validity654

of our findings.655

Conclusion656

Prior research has found strong correlations657

between network atrophy and cognitive decline in658

AD [7, 8], but lacks a direct comparisons of patterns659

of structure-function relationships across a spectrum660

of cognitive aging. The present study demonstrates661

that atrophy within global brain networks is related662

to severity of overall cognitive dysfunction across663

AD, T2DM, and HC. Qualitative differences in the664

pattern of atrophy were seen in AD and T2DM, high- 665

lighting differences in neuropathologic mechanisms. 666

In the future, measuring structure-function relation- 667

ships may improve prognostication for older adults at 668

high risk of cognitive decline [77], and allow for indi- 669

vidualized targeting of future therapies using phar- 670

macologic, lifestyle-based, and neuromodulatory 671

approaches to promote healthy cognitive aging. 672
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