Recurrent SLC1A2 Variants Cause Epilepsy via a Dominant Negative Mechanism

Andrew B. Stergachis, MD, PhD,*
Jonai Pujol-Giménez, PhD,*
Gergely Gyimesi, PhD
Daniel Fuster, MD
Giuseppe Albano, PhD
Marina Troxler, MSc
Jonathan Picker, MD, PhD
Paul A. Rosenberg, MD, PhD
Ann Bergin, MB, ScM, MRCP
Jurriaan Peters, MD, PhD
Christelle Moufawad El Achkar, MD
Chellamani Harini, MD
Shannon Manzi, PharmD
Alexander Rotenberg, MD, PhD
Matthias A. Hediger, PhD
Lance H. Rodan, MD

SLC1A2 is a trimeric transporter essential for clearing glutamate from neuronal synapses. Recurrent de novo SLC1A2 missense variants cause a severe, early onset developmental and epileptic encephalopathy via an unclear mechanism. We demonstrate that all 3 variants implicated in this condition localize to the trimerization domain of SLC1A2, and that the Leu85Pro variant acts via a dominant negative mechanism to reduce, but not eliminate, wild-type SLC1A2 protein localization and function. Finally, we demonstrate that treatment of a 20-month-old SLC1A2-related epilepsy patient with the SLC1A2-modulating agent ceftriaxone did not result in a significant change in daily spasm count.

ANN NEUROL 2019;85:921–926
NaCl, 5mM ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100, 0.5% deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and 50mM Tris-HCl, pH 7.4 containing protease inhibitors. Insoluble debris was cleared by centrifugation, and protein equivalent amounts of cleared lysates were incubated with streptavidin-agarose beads overnight at 4°C, followed by 3 washes with 100mM NaCl, 5mM EDTA, and 40mM Tris-HCl, pH 7.4, 2 washes with 500mM NaCl and 50mM Tris-HCl, pH 7.4, and 1 wash with 50mM Tris-HCl, pH 7.4. Beads were resuspended in 2x Laemmli buffer and heated to 95°C. Elute was resolved on SDS-polyacrylamide gels and transferred onto polyvinylidene difluoride membrane prior to immunoblotting. Antibodies for immunoblots include α-SLC1A2 (PA5-17099; Thermo Scientific, Waltham, MA), rabbit polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA), and horseradish peroxidase–conjugated goat antirabbit IgG (W4011; Promega, Madison, WI). Optical densitometry determination was made using ImageJ.

Cycloheximide Treatment
Transfected HEK293 cells were treated with Dulbecco modified Eagle medium media containing 20μg/ml cycloheximide for different amounts of time, then harvested with radioimmunoprecipitation assay buffer and assayed by immunoblotting as above.

Li–[3H]-Glutamate Uptake
HEK293 cells were transiently transfected in triplicate, and after 24 hours each well was washed 3 times with uptake buffer (140mM NaCl, 2.5mM KCl, 1mM CaCl2, 1mM MgCl2, 1.2mM K2HPO4, 10mM glucose, 10mM hydroxyethylpiperazine ethane sulfonic acid, pH 7.4), then incubated for 10 minutes at room temperature with 100μl of uptake buffer containing 100μM L-glutamate and 0.05μCi of Li–[3H]-glutamate. Cells were then washed 3 times with ice-cold uptake buffer, then treated with 100μl of MicroScint-20 (PerkinElmer, Waltham, MA) for 1 hour at room temperature. L–[3H]-Glutamate uptake was determined using TopCount microplate scintillation and luminescence counter (PerkinElmer), and counts per minute (cpm) values were transformed into flux rates and averaged and normalized as follows:

\[
\text{counts(cpm)/well} \times \frac{[\text{substrate}](\mu M)}{\text{total counts(cpm/liter)} \times \text{incubation time (min)}}
\]

Ceftriaxone Trial
An innovative therapy protocol was approved by the Boston Children’s Hospital Institutional Review Board (IRB). After observing baseline epileptic spasm frequency via both caregiver-observed spasm count and continuous video-electroencephalography (EEG) for 24 hours, intravenous (IV) ceftriaxone was initiated at 80mg/kg/day. The patient was observed for 2 days after ceftriaxone initiation with continuous video-EEG, then discharged after placement of a peripherally inserted central catheter for home ceftriaxone infusion. On days 7 and 14 of ceftriaxone therapy, she was admitted for planned monitoring of spasm counts using continuous video-EEG. Per the IRB protocol, treatment was stopped after 14 days of ceftriaxone therapy. Daily spasm counts were collected by the caregiver during treatment and for 12 days after ceftriaxone discontinuation.

Results
Clinical Spectrum of SLC1A2-Related Epilepsy
We present an expanded clinical phenotype of SLC1A2-related epilepsy based on 7 independent cases, including 1 new de novo dominant case, 5 previously reported de novo dominant cases,6–8 and 1 previously reported recessive case.9 All 6 de novo dominant cases developed early onset epilepsy with symptom onset between 2 days and 6 weeks of life (Supplementary Table). Seizures typically presented as focal motor events (often tonic or myoclonic), and progressed to multiple seizure types including epileptic spasms, myoclonic seizures, focal and generalized tonic seizures, and tonic–clonic seizures. Seizures were systematically refractory to multiple medications. Brain magnetic resonance imaging was normal for the first several months of life, but around 5 months of life began to show evidence of delayed myelination, thinning of the corpus callosum, and cerebral cortical atrophy. EEG patterns demonstrated multifocal and generalized epileptiform discharges with abnormal background activity, including modified and classic hypsarrhythmia. Common clinical features included severe global developmental delay (6/6 cases), cortical visual impairment (3/6 cases), axial hypotonia (6/6 cases), spasticity and/or joint contractures (5/6 cases), and kyphoscoliosis (2/6 cases). Of note, the case of recessive SLC1A2-related epilepsy appears milder, with seizure onset at 2 years of age that was controlled with a single medication and mild developmental delay.

Recurrent De Novo SLC1A2-Related Epilepsy
Variants Localize to the Trimerization Domain of SLC1A2
Five of the 6 de novo dominant cases result from recurrent alterations at SLC1A2 Gly82 (Gly82Arg) and Leu85 (Leu85Pro), whereas Pro289Arg has only been observed in 1 case. All 3 of these amino acids are highly conserved and colocalize within the same region of the SLC1A2 trimerization domain, far from the glutamate binding site (Fig 1). Both Gly82 and Leu85 are located in a close helix–helix contact between transmembrane helix (TMH)
2 and 5, whereas Pro289 is required to create a kink in TMH5. All 3 of these variants are predicted to disrupt TMH2 or TMH5.

Leu85Pro Variant Significantly Reduced SLC1A2 Activity

To evaluate the effects of these de novo dominant variants on SLC1A2 function, we studied the Leu85Pro variant in a well-established in vitro model of transiently expressed SLC1A2 in HEK cells. Both wild-type (WT) SLC1A2 (SLC1A2wt) and Leu85Pro SLC1A2 (SLC1A2L85P) proteins were readily expressed in HEK cells and were able to form trimeric plasma membrane-bound proteins (Fig 2). However, compared to SLC1A2wt, SLC1A2L85P formed less monomeric (37 ± 9.4% of WT) and trimeric (47 ± 8.9% of WT) plasma membrane-bound SLC1A2 protein, yet maintained a preserved trimer-to-monomer ratio. The protein half-life did not differ between SLC1A2wt and SLC1A2L85P, demonstrating that the Leu85Pro variant is associated with decreased plasma membrane-bound SLC1A2 protein, but not an overt defect in trimerization or increased protein degradation. Furthermore, whereas cells transfected with SLC1A2wt demonstrated robust glutamate transport activity, cells transfected with SLC1A2L85P had significantly reduced glutamate uptake, indicating that SLC1A2L85P has significantly reduced functional activity despite its ability to form stable trimeric plasma membrane-bound protein. However, when both SLC1A2wt and SLC1A2L85P were transfected together, the glutamate transport activity was reduced below 50%, suggesting a dominant negative effect of the mutant allele over the SLC1A2wt.

SLC1A2L85P Acts via a Dominant Negative Mechanism to Reduce SLC1A2wt Activity

To directly evaluate whether SLC1A2L85P acts via a loss-of-function or dominant negative mechanism, we compared the activity of SLC1A2 between cells expressing only SLC1A2wt or both SLC1A2wt and SLC1A2L85P, using different DNA ratios. Identical amounts of SLC1A2wt DNA was used in both transfections, enabling us to quantify the effect of SLC1A2L85P on SLC1A2wt protein function. Notably, glutamate transport activity in cells expressing both SLC1A2wt and SLC1A2L85P was reduced by 33% compared to cells expressing only SLC1A2wt (67 ± 10.8% of WT; see Fig 2E), demonstrating that SLC1A2L85P acts via a dominant negative mechanism to reduce SLC1A2wt activity.
increasing amount of both SLC1A2wt and SLC1A2L85P

Given our observation in vitro that transfection with an dominant negative effect of SLC1A2L85P on SLC1A2wt expression in vivo may help partially alleviate the glutamate transporter defect caused by SLC1A2L85P. To test this, we evaluated the SLC1A2-modulating agent ceftriaxone on a 20-month-old with de novo dominant Leu85Pro SLC1A2-related epilepsy. Ceftriaxone is an US Food and Drug Administration–approved antibiotic that crosses the blood–brain barrier and increases SLC1A2 expression and function within several days in neural tissue.11–15 After IRB approval, the patient was initiated on IV ceftriaxone at 80mg/kg/day for 14 days. Caregiver-assessed daily spasms resulted in increased SLC1A2 function (see Fig 2F), we hypothesized that increasing both SLC1A2L85P and SLC1A2wt expression in vivo may help partially alleviate the glutamate transporter defect caused by SLC1A2L85P. To test this, we evaluated the SLC1A2-modulating agent ceftriaxone on a 20-month-old with de novo dominant Leu85Pro SLC1A2-related epilepsy. Ceftriaxone is an US Food and Drug Administration–approved antibiotic that crosses the blood–brain barrier and increases SLC1A2 expression and function within several days in neural tissue.11–15 After IRB approval, the patient was initiated on IV ceftriaxone at 80mg/kg/day for 14 days. Caregiver-assessed daily spasms

Effect of Ceftriaxone on Seizure Frequency in a Patient with SLC1A2-Related Epilepsy
Given our observation in vitro that transfection with an increasing amount of both SLC1A2wt and SLC1A2L85P

acts in a dominant negative manner to reduce, but not eliminate, SLC1A2wt glutamate transporter function. The dominant negative effect of SLC1A2L85P on SLC1A2wt function is likely mediated via an effect on SLC1A2 folding, trafficking, or functional disruption of mixed trimeric proteins, given the ability of SLC1A2L85P to form stable trimeric protein.
counts were recorded for 28 days and demonstrated good agreement with continuous video-EEG monitoring (Fig 3). Ceftriaxone therapy did not result in a significant change in the daily spasm count (median 50 with vs 45 without ceftriaxone; \(p = 0.23 \), 2-tailed Welch \(t \) test; see Fig 3), although subjectively the caregiver thought that the patient’s overall level of alertness improved during ceftriaxone therapy. EEG background was unchanged, and treatment was not associated with any major adverse events. Overall, these findings indicate that the SLC1A2-modulating agent ceftriaxone did not improve daily epileptic spasm frequency over the short term in a 20-month-old with Leu85Pro SLC1A2-related epilepsy.

Discussion

We demonstrate that the recurrent de novo Leu85Pro SLC1A2 variant causes a severe, early onset developmental and epileptic encephalopathy via a dominant negative mechanism that reduces, but does not eliminate, SLC1A2wt protein localization and function. Based on these findings, as well as the lack of seizures in humans and mice with heterozygous SLC1A2 loss-of-function variants, it appears that there is a critical dosage of functional SLC1A2 protein (somewhere between 0 and 50% of WT) under which seizures develop. It is possible that the differences in seizure severity between the dominant and recessive forms of this condition (see Supplementary Table) result from differences in the amount of remaining functional SLC1A2 protein, with the recessive variants resulting in a higher amount of remaining functional SLC1A2 protein. Finally, although ceftriaxone is one of the best studied SLC1A2-modulating agents across mice and humans, our report represents the first trial of ceftriaxone in a human with a condition resulting from a direct alteration in SLC1A2. Although we observed no benefit of a 2-week trial of ceftriaxone in this patient, additional studies are warranted. It is likely, based on progressive neuroimaging abnormalities in this disorder, that there is cumulative neuronal damage over time from excessive activation of glutamate receptors. As such, earlier initiation of SLC1A2-modulating agents may be efficacious to overcome the cumulative dominant negative effects of the variant SLC1A2 allele.

Acknowledgment

M.A.H. was supported by Swiss National Science Foundation grant #31003A_156376. J.P-G. and G.G. were supported by Marie Curie Actions International Fellowship Program TransCure. A.B. was supported by NIH T32 grant GM007748 (NIGMS) and P.A.R. by NIH grants NS066019 (NINDS) and MH104318 (NIMH).

We thank T. Lochner and Y. Amrein for their dedication and technical contribution as well as all the patients and families described in this case series.

Author Contributions

Potential Conflicts of Interest
Nothing to report.

References