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Abstract
The brain is a complex, plastic, electrical network whose dys-
functions result in neurological disorders. Multichannel trans-
cranial electrical stimulation (tCS) is a non-invasive
neuromodulatory technique with the potential for network-
oriented therapy. Challenges to realizing this vision include the
proper identification of involved networks in a patient-specific
context, a deeper understanding of the effects of stimulation on
interconnected neuronal populations - both immediate and
plastic - and, based on these, developing strategies to person-
alize brain stimulation interventions. For this reason, personal-
ized hybrid biophysical and physiological models of brain
networks are poised to play a key role in the evolution of network-
oriented transcranial stimulation. We review some of the recent
work in this emerging area of research and provide an outlook for
futuremodeling and experimental work, aswell as for developing
its clinical applications in fields such as epilepsy.
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Introduction
The brain is a complex, plastic, electrical network oper-
ating at multiple scales - neural processing is essentially
mediated by functional and structural networks. Over
the past decades, neuroscience has made significant ad-
vances in our understanding of brain function. There is a

growing body of evidence suggesting that large-scale
networks underlie both integration and differentiation
processes which are fundamental for information
processing in the brain. For instance, putatively simple
cognitive tasks such as object recognition have been
shown to involve networks that include the bilateral oc-
cipital, the left temporal and the left/right frontal regions
[1]. Neuropsychiatric disorders ultimately result from
network dysfunctions which may arise from the abnor-
mality in one or more isolated brain regions but produce
alterations in larger brain networks (see Refs. [2e4] and
references therein).

In such a context, networks become the natural target of
neuromodulatory interventions. Advances in neuro-
imaging modalities such as positron emission tomogra-
phy (PET), magneto- and electroencephalography
(EEG/MEG), functional magnetic resonance imaging
(fMRI) and diffusion tensor imaging (DTI) provide
valuable tools for the identification of networks. For
instance, the ‘resting state’ paradigm is increasingly
used to assess intrinsic brain activity and brain connec-
tivity using modalities such as fMRI, EEG or MEG [5].
Activity recorded during spontaneous rest using fMRI
can be decomposed into separate but integrated resting-
state networks (RSNs) [6,7] also known as “modules”
[8] or “architectures” [9], with specific RSNs reflecting
the activity within sensory (e.g., visual, motor, auditory)
and associative brain regions related to high-order
cognitive processes such as abstract reasoning, atten-
tion, language, and memory. This organization, as
captured via functional connectivity (FC) analysis of
fMRI data collected during resting-state (rs-fcMRI), is
correlated with individual variability in several cognitive
functions and personality traits [10e13], with recent
studies suggesting the possibility of capturing individual
brain uniqueness by means of finely tailored FC analysis
[14]. A similar approach can be used for the spatio-
temporal decomposition of electrophysiological signals
at higher temporal resolution (w1 ms) into so-called
microstates [15,16]. These have been linked to a vari-
ety of cognitive functions and pathologies [16e19].
While such approaches provide stimulation targets at
relatively high spatial resolution, currently used nonin-
vasive brain stimulation techniques - such as Trans-
cranial Magnetic Stimulation (TMS) - cannot easily be
employed to simultaneously engage multiple network
nodes or sub-networks. TMS network manipulation
based on the induction of spike-timing-dependent
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plasticity (STDP) has been recently proposed [20,21],
but requires relatively expensive hardware and can only
be performed in laboratory settings. Novel, safe,
portable solutions for network-engagement are needed.

Transcranial electrical current stimulation (tCS, some-
times also called tES), which includes both direct and
alternating current variants known as tDCS and tACS, is
a non-invasive sub-threshold neuromodulatory technique
pioneered by Nitsche and Paulus [22]. Low intensity,
controlled currents (typically w1 mA but <4 mA) are
applied through scalp electrodes in repeated 20e40-min
sessions. This subtle but persistent modulation of
neuronal activity is believed to lead to plastic effects
deriving from Hebbian mechanisms (see Refs. [23e25]
and references therein). That is, tCS induces concur-
rent and plastic effects from persistent (in time),
mesoscale (in space), weak electric fields acting on brain
networks. Its clinical applications include neuropathic
chronic pain, major depression, stroke rehabilitation,
addictive disorders and epilepsy [26]. tCS is recognized
for its applicability and safety [27].

The recent evolution of tCS has delivered multichannel
systems using small electrodes much like EEG. This
advance comes with opportunities and challenges.

Multichannel stimulation and its
optimization
In the past years, methods have been proposed to
optimize multichannel tCS (see, e.g. Ref. [28]) proved
that this problem is mathematically well-posed and
showed that optimized electric fields display signifi-
cantly higher focality and, in general, a better alignment
with the target vector than those produced by standard
bipolar electrode montages [29]. Based on work from
Miranda et al. [30] and Fox et al. [31], Ruffini et al. [32]
proposed a method for optimization of multichannel
tCS (Stimweaver). Its main features are a focus on
cortical excitability, the use of an interaction mechanism
inferred from prior in-vivo and in-vitro work (called the
lambda-E model [23]) that places emphasis on the
component of the electric field orthogonal to the cortical
surface, MRI driven finite element modeling of the
electric fields produced by multichannel tCS, and a
rapid optimization method exploring number, current
intensity and spatial location of electrodes. The method
requires as key inputs a specification of the target
electric field on the cortex, a weight map to prioritize
target regions for the optimizer and other parameters
such as the maximal number of electrodes and currents
allowed. Defining these maps is, of course, key and re-
quires a deep understanding of cortical function e
including its network aspects.

This method has been employed by several research
groups. For example, Fisher et al. [33] explored whether

the effects of tCS on a region can be enhanced by
targeting its associated network. In particular, a network
associated with a local target on the left motor cortex
(M1) was defined using rs-fcMRI. In a cross-over study,
fifteen healthy subjects were stimulated in several
conditions, including one with a bipolar montage
targeting the seed (M1), another with an eight-
electrode montage targeting its associated resting state
network, and a sham condition. Cortical excitability of
the left M1 was probed using TMS/MEPs, as in the
pioneering work by Nitsche and Paulus [22]. The au-
thors observed that network-targeted tDCS led to a
significant increase in left M1 excitability over time
compared to traditional tDCS.

Dagan et al. [34] recently studied the use of multi-
channel tDCS in Parkinson’s disease (PD) with
freezing of gait (FOG), one of its most disturbing and
least understood symptoms. Several hypotheses sug-
gest that FOG is not only a motor problem but also
partly the result of deficits in executive function
mediated by the dorsolateral prefrontal cortex
(DLPFC) (see Ref. [34] and references therein).
Indeed, targeting the DLPFC with tDCS appears to
positively affect cognition, gait, and postural control in
other populations. Because PD manifests strongly as a
motor disturbance phenomenon, including FOG, most
studies in PD have also focused on M1, reporting motor
function and gait improvements with bipolar tDCS
compared to sham stimulation (see references in
Ref. [34]). Dagan et al. [34] employed multichannel
tCS optimized for maximizing facilitation of both pri-
mary the motor cortex (M1) and the left dorsolateral
prefrontal cortex (DLPFC), and compared this to
stimulation of M1 only and a Sham condition. Multi-
target stimulation of both areas provided a significant
improvement over the other conditions.

In another recent example, research in disorders of
consciousness has employed multichannel network
stimulation [35] sought to engage the external (fron-
toparietal) consciousness network in severely brain-
injured patients using a target map derived from rs-
fMRI. Finally, in yet another example with healthy
subjects, attempts have been made to optimize multi-
channel solutions engaging cortical networks relevant
for cognitive training, e.g., targeting flexibility or work-
ing memory-related nodes while participants were un-
dergoing executive function training [36].

tCS and brain networks: from biophysics to
physiology
If the critical features of pathological networks can be
effectively captured in computational models, they can
be used for diagnosis and delivery of personalized
therapeutic weak electric fields (Figure 1). Multiple
studies in theoretical and computational neuroscience
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have developed whole-brain network models [38e41] to
explore the relationship between brain function and its
underlying connectivity. This increased interest in
finding the origin of the structure-function relationship
has led to a newly developing field known as network
neuroscience (Bassett and Sporns, 2017) [42] that relies on
graph theory to study the brain across its multiple scales
and complexities. Following earlier work by Merlet et al.
[39], Sanchez-Todo et al. [43] develop a method that
allows for the use of a subject’s EEG and MRI for the
creation of a personalized whole brain model. The
model is optimized to reproduce a subject’s EEG and
allows for virtual brain stimulation, and hence optimi-
zation (see Figure 2). Earlier, Bansal et al. [44], Spiegler
et al. [45], and Muldoon et al. [46] proposed a similar
approach. Although “hybrid” models can produce
physiologically-plausible EEG and simulate the gener-
ation of realistic tCS electric fields (see Miranda et al.
[37] in this issue, and references therein), representing
faithfully the effects of neuromodulation on brain plas-
ticity remains an unresolved, important challenge. We
now know from experimental work that tCS can directly

impact neuronal excitability and synaptic plasticity
[47,48]. Marquez-Ruiz et al. [49], e.g., showed that
blocking adenosine A1 receptors prevents the long-term
depression evoked in the somatosensory cortex after
cathodal tDCS in the rabbit. Based on molecular and
functional investigations (immunoblotting, immunoflu-
orescence, and electrophysiological recordings), Paciello
et al. [50] provide novel evidence that anodal tDCS
affects structural plasticity of the rat auditory cortex in a
paradigm of noise-induced hearing loss. Wischnewski
et al. [51] also reported that 20 Hz tACS can alter
NMDA Receptor-Mediated plasticity in the human
motor cortex. A number of studies indicate that tCS can
alter the release of neurotransmitters, typically dopa-
mine [52], glutamate and GABA [53]. Ultimately,
electric field mediated effects translate into short- or
long-term changes in the network connectivity - and
therapeutic effects. As the precise mechanisms involved
in tCS-induced plasticity changes still remain elusive,
multiscale computational models offer a unique frame-
work to untangle them, allowing, for instance, to
distinguish effects occurring at presynaptic (membrane

Figure 1

Workflow for the creation of a biophysical model and for model-driven tCS optimization. Anatomical MRI data (1) is used to create a finite
element biophysical model (FEM), and electrodes are placed using the 10-10 EEG system (2) (see Miranda et al., 2018 [37] for a review). A target
specification is provided, together with the desired number of electrodes and maximal currents. The Stimweaver algorithm provides the solution (3, i.e.,
electrode positions and currents). The approach is applicable to tDCS, tACS and other tCS modalities [32].
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polarization of axon terminals, neurotransmitter release)
or postsynaptic (GABA or glutamate receptors) level.

Future applications
Epilepsy
Epilepsy is a devastating, chronic disease that severely
affects the quality of life of 65 million people worldwide
(WHO, Fact Sheet on Epilepsy, 2012), 35% of whom do
not respond to drugs. Almost a third of patients (29%)
are untreatable: in about 19 million patients, drugs fail,
and surgery is not an option or has failed too. Treatment-
resistant epilepsies represent not only a considerable
challenge for the health care system but also a
tremendous burden at the individual, family, and com-
munity levels [54]. They are characterized by an
epileptogenic network (EN) interconnecting distant
brain areas located in one of the two hemispheres. There
is a large body of evidence suggesting that patient-
specific ENs [55] are responsible for the generation
and spread of seizures through synchronization pro-
cesses that interconnect neuronal assemblies with
altered excitability [56]. Of note, some studies have
tried to predict surgical outcome by removing EN edges
of the patient specific connectivity data in computa-
tional models of the subject’s brain [57e61]. In this
context, tCS can represent a valuable alternative to
surgery [62], provided that fundamental issues are
addressed. First, epileptogenic networks are patient-
specific. Therefore, interventions must be “tailored”
to each patient based on the accurate definition of target
brain areas and networks. Second, stimulation protocols
must achieve a therapeutic effect through a “network-

aware” management of hyperexcitability - a hallmark of
epileptogenic systems. Third, therapeutic effects must
be optimized in order to prevent the occurrence of
seizures. A protective and durable effect will certainly
require a better understanding of the mechanisms of
action of weak electric fields on brain networks from
short (minutes to hours) to long (days, weeks) time
scales.

Reaching subcortical targets via networks
Fox et al. [63] identified diseases treated with both non-
invasive and deep brain stimulation (DBS), listed the
target sites thought to be most effective in each disease
and tested the hypothesis that these sites are nodes
within a brain network as defined by rs-fcMRI. They
found that sites in which DBS was effective were
functionally connected to sites where noninvasive brain
stimulation had been found to be effective in diseases
including depression, PD, obsessive-compulsive disor-
der, essential tremor, addiction, pain, minimally
conscious state, and Alzheimer’s disease. This suggests
that rs-fcMRI may be useful for translating therapy
across stimulation modalities, optimizing treatment, and
for the identification of new stimulation targets. It also
supports a more general network approach toward un-
derstanding and treating neuropsychiatric disease,
highlighting the therapeutic potential of targeted brain
network modulation. Examples of potential cortical and
subcortical targets relevant for neuropsychiatric condi-
tions, as well as their rs-fcMRI map and corresponding
multichannel optimization, are shown in Figure 3 (see
also Ruffini et al. [32] for further discussion on the use
of these maps for multichannel tCS optimization).

Figure 2

Workflow for the creation of hybrid models model-driven tCS optimization. DTI and anatomical MRI data are combined to create a finite element
biophysical model (FEM), which is then personalized using EEG and other data to reflect both biophysical and physiologic characteristics – from
excitation/inhibition balance to plastic potential (long-term effects physiological model). The personalized hybrid brain model can be used to generate
EEG and to simulate the effects of brain stimulation. As a result, personalized diagnosis and treatment are possible, including the optimization of
stimulation protocols.
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Stroke
In another example, Otal et al. [64] proposed to identify
networks affected by a stroke at the individual level:
location, extent, and pattern of functional network
connectivity disruption should be considered when
determining the optimal tDCS intervention. Alstott
et al. [65] did a related in silico study where network
edges were removed to investigate the effect of such
perturbations on simulated brain activity. See an
extended review of Aerts et al. [66] regarding compu-
tational lesion and empirical studies investigating brain
network alterations in cancer, stroke and traumatic

injury patients. In the case of stroke, each lesion type
displays a particular functional and structural connec-
tivity signature that determines the tDCS intervention
goals. Lesion topography is usually subcortical, with
intracortical connectivity disruptions contributing
strongly to behavioral deficits [67]. In general, we may
consider three main approaches: a) targeting a single
region or node, b) targeting the single region indirectly via
a network as described above, or c) select a network or sub-
network (i.e., multi-nodal) as the target. The latter may be
especially relevant given the correlation of connectivity
disruption and symptoms. Depending on the approach

Figure 3

Connectivity-based network targeting. (A) Cortical representation of rs-fMRI connectivity patterns of selected brain regions of clinical relevance in
various neuropsychiatric conditions. The target regions are used as seeds, and their pattern of positively and negatively correlated regions in the brain
are computed. Multichannel tCS can be optimized to enhance positive (“excitatory”) or negative (“inhibitory”) cortical nodes, inducing changes in their
connectivity with the seed region and possibly modulating its spontaneous activity. (B) Examples of multichannel tCS solutions derived from Stimweaver
[32] for targeting the supplementary motor area in patients with obsessive-compulsive disorder (OCD) and subgenual cortex in patients with depression.
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chosen, different optimization strategies can be envi-
sioned. Tools based on tractography can be used to assess
damaged networks and devise therapeutic strategies [68].

Conclusions
Multichannel tCS provides a promising tool for targeting
networks but is not yet used as a standard treatment in
any disease. This is related to several challenges and
methodological limitations: an overwhelming number of
stimulation parameter combinations, empirical param-
eter setting, an absence of a rational definition of targets
and protocols, the qualitative nature of results, unknown
mechanisms of action, and an insufficient account for
patient-specific factors. A bottom-up, science-based
mechanistic understanding of both the effects of tCS
and the desired cortical network changes is lacking.
Research should aim to overcome this by providing a
better understanding mechanism of interaction -
including both immediate and longer-term plastic ef-
fects of electric fields in networks across scales. We also
need to refine the current methods used for network
identification and for the design of interventions in each
disease and patient. Finally, experiments should be
carried out to investigate how network interactions can
best be leveraged by tCS, measuring the functional and
structural alterations induced by tCS using tools such as
EEG, fMRI or DTI. Modeling in sufficient detail the
combined biophysics and physiology of tCS will be
paramount for the design and interpretation of studies
and for their ultimate clinical translation.
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