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Abstract

In the 1990s, it is difficult to open a newspaper or watch television and not find someone claiming that 
magnets promote healing.Rarely do these claims stem from double-blind, peer-reviewed studies, making it 
difficult to separate the wheat from the chaff. The current fads resemble those at the end of the last century, 
when many were falsely touting the benefits of direct electrical and weak magnetic stimulation. Yet in the 
midst of this popular interest in magnetic therapy, a new neuroscience field has developed that uses powerful 
magnetic fields to alter brain activity-transcranial magnetic stimulation. This review examines the basic 
principles underlying transcranial magnetic stimulation, and describes how it differs from electrical stimulation 
or other uses of magnets. Initial studies in this field are critically summarized, particularly as they pertain to 
the pathophysiology and treatment of neuropsychiatric disorders. Transcranial magnetic stimulation is a 
promising new research and, perhaps, therapeutic tool, but more work remains before it can be fully 
integrated in psychiatry's diagnostic and therapeutic armamentarium.

Arch Gen Psychiatry.1999;56:300-311

Since the work of Penfield,  the possibility of noninvasive and focal stimulation of the brain has been an 
appealing vision that now seems to be realized. Transcranial magnetic stimulation (TMS) holds special 
promise as a tool to study localization of function, connectivity of brain regions, and pathophysiology of 
neuropsychiatric disorders. It may also have potential as a therapeutic intervention. For more than a century, 
it has been recognized that electricity and magnetism are interdependent. Passing current through a coil of 
wire generates a magnetic field perpendicular to the current flow in the coil. If a conducting medium, such as 
the brain, is adjacent to the magnetic field, current will be induced in the conducting medium. The flow of the 
induced current will be parallel but opposite in direction to the current in the coil. Thus, TMS has been 
referred to as "electrodeless" electrical stimulation, to emphasize that the magnetic field acts as the medium 
between electricity in the coil and induced electrical currents in the brain.

[1]

PROCEDURES

9/5/03 2:37 PMOvid: George: Arch Gen Psychiatry, Volume 56(4).April 1999.300-311

Page 2 of 22http://80-gateway1.ovid.com.ezp1.harvard.edu/ovidweb.cgi

For 
pe

rso
na

l a
nd

 re
se

arc
h u

se
 on

ly



Transcranial magnetic stiumulation involves placing an electromagnetic coil on the scalp ( ). High-
intensity current is rapidly turned on and off in the coil through the discharge of capacitors. This produces a 
time-varying magnetic field that lasts for about 100 to 200 microseconds. The magnetic field typically has a 
strength of about 2 T (40,000 times the earth's magnetic field, or about the same intensity as the static 
magnetic field used in clinical magnetic resonance imaging). The proximity of the brain to the time-varying 
magnetic field results in current flow in neural tissue. The technological advances made in the last 15 years 
led to the development of magnetic stimulators that produce sufficient current in brain to result in neuronal 
depolarization.

Figure 1

Figure 1. Example of transcranial magnetic stimulation (TMS) application. Ziad Nahas, MD, 
demonstrates a TMS figure-8 coil applied over the left prefrontal cortex of Ananda Shastri, 
PhD. Note that the subject is awake and alert, and is wearing earplugs for safety. The 
electromyography machine in the lower left corner (B) is used to determine the motor 
threshold for dosing of stimulation intensity. Several TMS devices and coils are pictured: A, 
Medtronic-Dantec (Copenhagen, Denmark); C, Cadwell (Kennewick, Wash) with water-
cooled figure-8 coil; D, Neotonus (Atlanta, Ga); and E, Magstim (Sheffield, England).

Neuronal depolarization can also be produced by electrical stimulation, with electrodes placed on the 
scalp (referred to as transcranial electric stimulation). Electroconvulsive therapy (ECT) is an example of this. 
Importantly, unlike electrical stimulation, where the skull acts as a massive resistor, magnetic fields are not 
deflected or attenuated by intervening tissue. This means that TMS can be more focal than electric 
stimulation. Furthermore, for electrical stimulation to achieve sufficient current density in brain to result in 
neuronal depolarization, pain receptors in the scalp must be stimulated. [2,3]

Transcranial magnetic stimulation is usually performed in outpatient settings, and, unlike ECT, does not 
require anesthesia or analgesics. Subjects usually notice no adverse effects except for occasional mild 
headache and discomfort at the site of the stimulation.

A striking effect of TMS occurs when one places the coil on the scalp over primary motor cortex. A 
single TMS pulse of sufficient intensity causes involuntary movement. The magnetic field intensity needed to 
produce motor movement varies considerably across individuals, and is known as the motor threshold. 
Placing the coil over different areas of the motor cortex causes contralateral movement in different distal 
muscles, corresponding to the well-known homunculus. Transcranial magnetic stimulation can be used to 
map the representation of body parts in the motor cortex on an individual basis.  Subjectively, this 
stimulation feels much like a tendon reflex movement. Thus, a TMS pulse produces a powerful but brief 
magnetic field that passes through the skin, soft tissue, and skull, and induces electrical current in neurons, 
causing depolarization that then has behavioral effects (body movement). The TMS magnetic field declines 
logarithmically with distance from the coil. This limits the area of depolarization with current technology to a 
depth of about 2 cm below the brain's surface. 

[4]

[5]

[6-8]

CLINICAL AND BASIC APPLICATIONS IN NEUROPSYCHIATRY
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Single TMS over motor cortex can produce simple movements. Over primary visual cortex, TMS can 
produce the perception of flashes of light or phosphenes. To date, these are the "positive" behavioral 
effects of TMS. Other immediate behavioral effects are generally disruptive. Interference with information 
processing and behavior is especially likely when TMS pulses are delivered rapidly and repetitively. 
Repeated rhythmic TMS is called repetitive TMS (rTMS). If the stimulation occurs faster than once per 
second (1 Hz) it is referred to as fast rTMS. During the study of thousands of subjects, no one has 
reported that TMS elicits memories, smells, or other complex psychological phenomena like those reported 
by Penfield et al  with direct intracranial electrical stimulation during neurosurgery. One explanation for 
this divergence is that the use of implanted electrodes in neurosurgery resulted in stimulation of deep cortex 
with high currents, perhaps causing spread away from the direct site. Furthermore, many of the phenomena 
that surgical patients experienced were part of their seizure aura. Similar TMS studies have not been 
performed in patients with epilepsy.

[9]

[10]

[1,11]

Most research on TMS has used magnetic field intensities near the motor threshold and, therefore, 
sufficient to cause neuronal depolarization. Research on TMS has also demonstrated that there are important 
physiological effects with lower intensities. For example, TMS at a low intensity can inhibit or enhance motor 
responses to closely following suprathreshold stimulation. Nonetheless, a key distinction between TMS 
research and work on the behavioral effects of exposure to magnetic fields is that TMS effects occur at or 
near intensities sufficient to produce cortical neuron depolarization. The capacity to noninvasively excite or 
inhibit focal cortical areas represents a remarkable advance for neuroscience research. As an interventional 
probe in neuropsychiatric disorders, rTMS has the potential of taking functional imaging one step further by 
elucidating causal relationships.

[12]

POTENTIAL CLINICAL APPLICATIONS
Mood Disorders

The area of greatest public attention has been the use of TMS as an antidepressant. Several small open 
studies suggested that low-frequency TMS over the vertex might have antidepressant effects.  Based 
on imaging findings of abnormal prefrontal function in depression  and the evidence that modulation of 
prefrontal function is linked to the efficacy of ECT,  George and Wassermann  speculated that 
nonconvulsive stimulation over prefrontal cortex may produce a more profound antidepressant effect than 
over the vertex. Prior to a treatment trial, they studied the immediate effects of right vs left dorsolateral 
prefrontal cortex (DLPFC) rTMS in medication-resistant depressed patients. In contrast to the direction of 
mood effects in normal volunteers, right DLPFC fast stimulation resulted in increased anxiety and worsened 
mood (M.S.G., unpublished observations, 1994).

[13-15]

[16,17]

[18] [19,20]

Open daily left DLPFC rTMS was then given to 6 medication-resistant depressed inpatients. After 5 days 
of treatment, Hamilton Depression Rating Scale (HDRS) scores decreased by 26%  ( ). In a later 
open trial, Figiel et al administered fast left prefrontal cortex rTMS to 56 largely medication-resistant 
depressed patients, referred for ECT. After 5 days of rTMS, they observed a 42% response rate (defined 
as >50% decrease in HDRS scores). Using a different open design, Conca et al  treated a cohort of 
depressed patients with a selective serotonin reuptake inhibitor alone or with a selective serotonin reuptake 
inhibitor and rTMS augmentation. The rTMS group had a faster antidepressant response.

[21] Table 1

[22]

[23]
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Table 1. Summary of TMS Clinical Trials in Major Depression* 

For any potential antidepressant treatment, double-blind, random assignment, placebo- or sham-
controlled studies are critical. Designing blinded studies with TMS is a challenge. Someone knowledgeable 
about the patient's treatment condition must perform the TMS, and this person is in a position to influence 
outcome. Thus, none of the TMS studies have been truly double-blind.

Using a within-subject, crossover design, Pascual-Leone et al  reported a sham-controlled study. In 
TMS, holding the coil obliquely to the scalp mimics the sensations of "real" TMS, but produces minimal 
intracerebral current, thus serving as a sham. They found that fast left DLPFC rTMS for 5 days had marked 
antidepressant effects in psychotic depression, with 11 of 17 patients showing a decline in HDRS scores 
greater than 50%. Stimulation at other sites (right DLPFC, vertex) and sham had no antidepressant effects. 
This remarkable result was superior to what could be expected with any medication regimen, or even ECT.

However, patients were not medication free and the study used a multiple crossover design (all 
subjects were enrolled for 5 months and received 5 types of stimulation, each for 5 consecutive days per 
month). Three follow-up studies have not observed the same magnitude or speed of response.
Indeed, some studies have suggested that psychotic depression is resistant to rTMS in its current form. 

[24]

[25,26]

[27-29]

[29,30]

George et al  completed a double-blind, sham-controlled, single-crossover study of fast left DLPFC 
rTMS in 12 medication-resistant depressed outpatients using a weak intensity (80% of motor threshold). 
The improvement with 10 days of active rTMS was modest (average 26% decline in HDRS scores at 2 
weeks), but significantly greater than with sham treatment. This study also suffered from use of a crossover 
design in which carryover effects could not be ruled out, and some patients received maintenance medication.

[31]

An important question is whether the antidepressant effects of rTMS are region or frequency-dependent. 
Klein and colleagues  randomized 71 depressed outpatients to 2 weeks of active or sham slow rTMS 
over right prefrontal cortex using a round, nonfocal coil. In the active group, 41% of TMS-treated patients 
responded with at least a 50% decrease in HDRS scores, and only 17% of the sham-treated patients met 
response criteria. This study challenged the specificity of antidepressant effects with left prefrontal 
stimulation. Importantly, slow rTMS has considerably less seizure risk than fast rTMS. A recent parallel-
design, blinded study from Nahas et al  and George et al  suggests that slow (5 Hz) left prefrontal 
TMS may be as effective as fast (20 Hz) left stimulation. At 2 weeks, 6 of 10 subjects with slow rTMS, 3 of 
10 subjects with fast rTMS, and 0 of 10 subjects with sham TMS were "responders" (>50% decrease in 
HRDS scores). Similarly, Padberg et al  studied 18 nonpsychotic depressed patients with sham 
treatment, slow rTMS, or fast rTMS, all over the left prefrontal cortex. During 5 days, 5 of 6 in the slow 
group and 3 of 6 in the fast group improved (20%-30% decrease in HDRS scores), with no change in the 
sham group. In summary, further work using balanced designs is needed to determine whether the 
antidepressant effects of rTMS are region-, frequency-, or intensity-dependent.

[32,33]

[34] [35]

[27]

How does TMS compare with ECT, and do the 2 modalities work through similar or differing 
mechanisms? Using a parallel-group, nonblinded design, Grunhaus et al  randomly assigned 40 inpatients 
to treatment with fast left DLPFC rTMS or ECT. Among nonpsychotic patients, up to 4 weeks of daily 
rTMS was equivalent in efficacy to ECT, but ECT showed a superiority among psychotically depressed 

[29]

[Help with image viewing]
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patients. Pridmore et al  studied 22 outpatients with either left unilateral ECT for 2 weeks, or 1 ECT 
treatment per week followed by 4 days of left prefrontal rTMS. At the end of 2 weeks, the 2 arms were 
equally effective, with an average 75% decrease in HDRS scores. Unfortunately this study did not have a 
control arm of 1 day of ECT and sham TMS, to formally test the role of rTMS. However, it seems that 
TMS may not interfere with ECT mechanisms, and may be complementary.

[30]

As might be expected with a new technology, not all the initial rTMS trials have been positive. Loo et al
 completed a parallel-group study with 18 nonpsychotic depressed patients randomized to fast left 

DLPFC or sham rTMS, with a 2-week treatment period. Despite using the same stimulation parameters as 
Pascual-Leone et al,  no difference was detected between active and sham treatment.

[28]

[24]

In the first study of acute mania, Belmaker and Grisaru  and Grisaru et al randomized 17 patients 
to fast left or right prefrontal rTMS, in addition to standard pharmacological care. During the 2-week study 
period, the right prefrontal group had a greater decline in manic symptoms, raising the possibility that the 
laterality of fast rTMS necessary for antimanic effects is opposite to that needed for antidepressant effects.

[36] [37]

These initial studies suggest that prefrontal TMS can exert short-term antidepressant or antimanic effects. 
On the optimistic side, they raise the specter that focal modulation of cortical excitability has therapeutic 
properties in mood disorders and that TMS may prove informative about the anatomy and physiology of the 
neural systems involved in achieving therapeutic effects. At the clinical level, TMS may ultimately offer an 
alternative to ECT for severe or treatment-resistant depression, particularly since the adverse effect profile of 
TMS is relatively benign. Repetitive TMS does not involve anesthesia administration or seizure induction and 
has no obvious cognitive sequelae (J. T. Little, unpublished data). Given the substantial delay in symptomatic 
improvement seen with traditional antidepressant medications, another potential use of TMS may be 
as an augmentation agent to hasten clinical response in pharmacologically treated patients.

[38,39]

However, routine clinical use of TMS in mood disorders is far from certain. None of the initial studies was 
truly double-blind, none of the key effects has been rigorously replicated, and the positive findings are based 
on small samples in short (1- to 2-week) trials. There are major discrepancies among the initial studies in the 
magnitude and nature of antidepressant effects. In addition to the usual concerns about sample comparability 
and the reliability of assessment, the therapeutic application of rTMS has particular methodological 
issues involving sham application  and the parameters used. To complicate matters, unlike the motor 
cortex where the stimulus parameters can be titrated to a behavioral outcome, such as a motor evoked 
potential amplitude or observed movement, the prefrontal cortex is "silent." There is no evidence that it is 
appropriate to determine parameters for stimulation over prefrontal cortex based on effects of stimulation 
over the motor cortex. Combined TMS and imaging studies may help narrow the parameter selection for 
clinical trials in mood disorders.

[40,41]

[42]

Negative results should be expected given the limited basic knowledge behind the rTMS variables used in 
clinical trials. In this respect, it may be useful to note that the problem of multiple parameters also 
characterizes ECT. It was only after approximately 5 decades of clinical use that it was demonstrated that 
the anatomical site of electrical stimulation and the electrical dosage administered fundamentally influence the 
efficacy of ECT in major depression. [43,44]

Transcranial magnetic stimulation carries the vision of tailoring the site and nature of stimulation to 
individual needs. It is uncertain whether this vision will be realized and whether a treatment role for rTMS 
will emerge. At the practical level, rTMS research is not supported with the resources devoted to 
pharmaceutical development. Given the large parameter space, it is difficult to see how rTMS treatment 
applications can be optimized without considerable basic research extending from cell culture preparations 
through whole animal models, including humans.
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Anxiety Disorders

In a randomized trial of left and right prefrontal and midoccipital stimulation in 12 patients with obsessive-
compulsive disorder, Greenberg et al  found that a single session of right prefrontal rTMS decreased 
compulsive urges for 8 hours. Mood was also transiently improved, but there was no effect on anxiety or 
obsessions. Using TMS probes, the same group reported decreased intracortical inhibition in patients with 
obsessive-compulsive disorder,  which also has also been noted in patients with Tourette syndrome.

 McCann et al  reported that the condition of 2 patients with posttraumatic stress disorder 
improved during open treatment with 1-Hz rTMS over the right frontal cortex. Grisaru et al  similarly 
stimulated 10 patients with posttraumatic stress disorder over motor cortex and found decreased anxiety.

 These preliminary findings await replication in controlled trials.

[45]

[46,47]

[48,49] [50]

[51]

[51]

Schizophrenia

Somewhat surprisingly, TMS has been rarely used to study schizophrenia, with 1 report of an open 
clinical series of slow rTMS resulting in reduced anxiety.  There have been studies reporting slowed 
motor conduction time,  and 3 cases of reduced auditory hallucinations following slow rTMS over the left 
temporal cortex.  In 8 patients with prominent negative symptoms, Nahas and colleagues  found that 
compared with sham stimulation, one 20-minute session of fast rTMS to the left DLPFC was associated 
with slightly improved negative symptoms, and also resulted in improved scores on an attentional task.

[43]

[52]

[53] [54]

Movement Disorders

Therapeutic applications of TMS in movement disorders are preliminary. Fast rTMS of the motor cortex 
has been reported to improve performance on several motor measures in Parkinson disease,  although 
this effect was recently not replicated.  Slow rTMS has been reported to improve dystonia.  Even 
when seen, the beneficial effects in movement disorders have been short-lasting and thus without clinical 
application.

[55,56]

[57,58] [59]

Epilepsy

The TMS motor threshold is reduced in patients with untreated epilepsy, hinting at widespread 
problems in cortical excitability. Repetitive TMS has also been used presurgically to induce speech arrest for 
language localization. Therapeutically, there is 1 report of potential beneficial effects of slow rTMS in 
action myoclonus. 

[60]

[61]

[62]

BASIC RESEARCH

As a noninvasive probe, TMS has the unique ability to map brain function, measure cortical excitability, 
and to modulate functional networks and examine their interrelations.

Motor and Sensory Function

Transcranial magnetic stimulation over the primary motor cortex evokes movement in the contralateral 
limb and has provided information on the anatomical organization and functional characteristics of the motor 
system. Single-pulse TMS has been useful in precise mapping of motor cortex representations, and in 
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demonstrating how these representations are altered in disease processes  and models of disease 
processes, such as ischemic nerve block. Cohen et al  found motor maps to be altered by conditions 
such as congenital mirror movements, amputations, spinal cord injury, and hemispherectomy. While TMS to 
the motor cortex readily evokes movement, TMS rarely elicits positive sensory phenomena. 
Nonetheless, TMS to the primary sensory cortex can block the perception of sensory stimulation.

[5,63-66]

[67] [64]

[9,68]

[66]

Visual Information Processing

Several groups have applied single-pulse TMS or rTMS to the study of visual processing. Pascual-Leone 
et al  found that rTMS over the occipital lobe impaired detection of visual stimuli and rTMS over the 
parietal lobe induced selective extinction of contralateral visual stimuli during double-simultaneous 
presentation. Others have demonstrated inhibition of stereoscopic perception with occipital rTMS.
Work with single-pulse TMS has yielded even more precise localization and timing data. For example, 
motion discrimination has been disrupted with TMS to area V5.  Precise timing of the interval between 
visual presentation and TMS has permitted the study of the neuroanatomical basis of visual masking and 
backward masking phenomena.

[69]

[70]

[71-73]

[9,74,75]

Language

Repetitive TMS delivered to discrete areas in the language-dominant hemisphere can disrupt speech.
 This method has high concordance with established methods of speech lateralization, such as 

intracarotid sodium amytal infusion (Wada test),  although rTMS sometimes produces speech arrest in 
the cortex unconfirmed by the Wada test. This has limited its use as a presurgical mapping tool.

[61,76]

[77]

Memory

Studies of the memory effects of TMS and rTMS have been conflicting. A few reports found no short-
term memory effects.  However, other work demonstrated that rTMS over the left temporal and 
bilateral DLPFC can impair short-term verbal recall  and that rTMS over the DLPFC may disrupt short-
term motor memory.  Memory effects seem to depend on the choice of study paradigm, stimulation site, 
and parameters.

[78,79]

[80]

[81]

Emotion

There is evidence that rTMS can modulate mood systems in normal volunteers. Three studies found that 
rTMS over the left DLPFC transiently induced a mild increase in self-rated sadness, whereas right DLPFC 
rTMS produced a mild increase in self-rated happiness  as early as 20 minutes  or as late as 5 to 8 
hours poststimulation.  As described, the mood effects of rTMS in patients with major depression may 
have an opposite laterality to those seen in normal volunteers. There has yet to be an investigation using 
TMS to probe the anatomy subserving the perception or expression of emotion. 

[82-84] [84]

[82]

[85-87]

Cortical Excitability

In addition to mapping cortical representations, TMS can examine functional alterations in cortex.
 Such work has yielded valuable information about neurophysiological changes in a variety of clinical 

conditions.
[5,64-66]

Motor Threshold With Single-Pulse TMS
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Motor threshold, the minimum magnetic intensity required to elicit a motor evoked potential in a target 
muscle, is increased in conditions of slowed conduction, like multiple sclerosis.  In contrast, motor 
threshold is decreased in untreated epilepsy, and this reverses with anticonvulsant treatment.  Plasma 
levels of an anticonvulsant medication have been found to covary with motor threshold. Transcranial 
magnetic stimulation measures of cortical excitability have also been studied in major depression, without 
clear-cut results. 

[88]

[60,89,90]

[90]

[91,92]

Conduction Latency With Single-Pulse TMS

The latency of motor responses evoked by TMS conveys information about conduction velocity. The 
difference in latency for responses evoked with cortical and cervical spinal TMS assesses the central motor 
conduction time. Central motor conduction time has been found to be abnormal in 72% of patients with 
multiple sclerosis,  and has been found to be delayed in other disorders associated with white matter 
hypomyelination  and in medication-free patients with schizophrenia.

[93]

[94] [52]

Intracortical Inhibition and Facilitation With Paired-Pulse TMS

The motor evoked potential response to a TMS pulse preceded by a subthreshold conditioning pulse is 
reduced when the interstimulus interval is 1 to 4 milliseconds and enhanced when the interstimulus interval is 
5 to 30 milliseconds,  reflecting intracortical inhibition and facilitation, respectively. Stimulation of one 
hemisphere can inhibit or facilitate responses elicited in the opposite hemisphere, indicating interhemispheric 
modulatory effects.  Paired-pulse inhibition is reduced in focal epilepsy  and enhanced by gamma-
aminobutryic acid (GABA)-ergic agents. Pharmacological manipulations suggest that intracortical 
paired-pulse inhibition reflects the activation of inhibitory GABA-ergic and dopaminergic interneurons, 
while paired-pulse facilitation reflects excitatory N-methyl-D-aspartate-mediated interneurons,  and 
motor threshold is modulated by ion channel conductivity. These profiles provide novel methods to 
investigate local alterations in neurochemical systems.

[12]

[95] [96]

[67]

[12]

[67]

[67]

Frequency-Dependent Effects on Cortical Excitability With rTMS

Some preliminary studies suggest that rTMS effects on cortical excitability may depend on the frequency 
of stimulation. Manipulations of frequency and intensity may produce distinct patterns of facilitation (fast 
rTMS) and inhibition (slow rTMS) of motor responses with distinct time courses.  These effects may 
last beyond the duration of the rTMS trains  with enduring effects on spontaneous neuronal firing 
rates.  Determining whether in fact lasting increases and decreases in cortical excitability can be 
produced as a function of rTMS parameters, and whether such effects can be obtained in areas outside of 
the motor cortex, are of key importance.

[97,98]

[99,100]

[101]

MECHANISMS OF TMS

To use TMS optimally, it is important to know how TMS is acting in the brain. Does TMS mimic normal 
brain physiology, or is it supraphysiologically depolarizing and activating different cell groups (excitatory, 
inhibitory, local, or remote) in a large region? Understanding of TMS mechanisms is being advanced through 
studies in animal models and by combining TMS with functional neuroimaging.

Animal Models
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Transcranial magnetic stimulation studies with intracranial electrodes in rhesus monkeys have provided 
information about the nature and spatial extent of the rTMS-induced electric field. Corticospinal tract 
development, aspects of motor control, and medication effects on corticospinal excitability have been 
studied fairly extensively in nonhuman primates using single-pulse TMS.  Such work has yielded 
information about TMS neurophysiological effects, such as the observation that TMS-evoked motor 
responses result from direct excitation of corticospinal neurons at or close to the axon hillock. 

[44,102]

[103-111]

[111]

Animal rTMS studies have reported antidepressantlike behavioral and neurochemical effects. In 
particular, rTMS enhances apomorphine-induced stereotypy and reduces immobility in the Porsolt swim 
test.  Repetitive TMS has been reported to induce ECT-like changes in rat brain monoamines, beta-
adrenergic receptor binding, and gene induction.  The effects of rTMS on seizure threshold are 
variable and may depend on the parameters and chronicity of stimulation.  Repetitive TMS has been 
reported to have anticonvulsant activity in rodents similar to the anticonvulsant activity of ECT.  While 
encouraging regarding potential antidepressant effects of TMS, this work has been conducted in rodents, 
making extrapolation to human TMS difficult.

[112,113]

[112-115]

[101,116]

[112]

Combining TMS With Functional and Structural Neuroimaging

Neuroimaging studies have shown that TMS is biologically active, both locally in tissue under the coil and 
at remote sites, presumably through transsynaptic connections. Several studies have shown that the different 
parameters used in rTMS (location, intensity, frequency) affect the extent and type of neurophysiological 
alterations. Thus, there is considerable promise that functional imaging research will help elucidate basic 
TMS effects and the roles that different TMS parameters exert in modulating these effects. Theoretically, this 
may advance clinical research, particularly if combinations of location, intensity, and frequency are found to 
have divergent effects on neuronal activity. Transcranial magnetic stimulation imaging studies can be divided 
into 2 main categories: (1) using imaging to guide TMS coil placement and understand the spatial distribution 
of TMS magnetic fields in the brain, and (2) using imaging to measure TMS effects on neuronal activity.

Commonly, the positioning of the TMS coil on the scalp has been determined physiologically. Single TMS 
pulses are used to locate the optimal site for finger movement, and then coil placement over other regions is 
determined relative to this optimal site. The TMS-determined external location for thumb movement 
compares favorably with motor cortex thumb representation as determined in imaging studies. [117,118]

However, in most clinical trials in depression, the coil was positioned at the DLPFC, by measuring 5 cm 
anterior to the optimal site for thumb movement.  The primary motor area for the thumb varies 
across individuals, and a brain region referenced to this site will be even more varied in location given 
different head size and cortical morphology. Several groups have now begun using magnetic resonance 
imaging (MRI)-guided systems to determine the coil position over specific brain gyri guided either by a 
probabilistic brain  or the subject's brain. Whether this affects TMS results is unclear.

[21,24,31,82-84]

[119,120]

Bohning et al  demonstrated that an MRI scanner can be used to display the TMS magnetic field 
(producing a phase map; ( )). This work confirmed that the TMS field is not altered appreciably by 
head geometry. Further, by combining several TMS coils with different relative orientations, this technique 
can measure in 3 dimensions the capacity to focus and combine magnetic fields. Ultimately, TMS coil arrays 
combined with MRI may target deep brain structures.

[6]

Figure 2
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Figure 2. Structural imaging may guide transcranial magnetic stimulation (TMS) placement. 
A coronal magnetic resonance image of a subject where the location of the TMS coil is 
indicated above the left hemisphere motor area. The magnetic field produced by the TMS 
coil when it discharges is shown in black gauss lines drawn on the brain. Combining TMS 
with structural imaging may allow for exact guidance of TMS coils, as well as understanding 
where the TMS magnetic fields are distributed in the brain. (Image courtesy of Daryl 
Bohning, PhD, and colleagues, Medical University of South Carolina Functional 
Neuroimaging Division, Charleston.)

Interleaving TMS and functional brain imaging offers much promise; however, technical issues have 
hampered initial research. It is sometimes difficult to match the imaging technique to the temporal duration of 
TMS. Owing to seizure risk at moderate intensity, fast rTMS can only be given in short pulse trains (1-8 
seconds) with relatively long intervals between trains (20 seconds). With 18-fluorodeoxyglucose positron 
emission tomography to measure cerebral metabolism and water tagged with radioacive oxygen ( ) O) 
positron emission tomography to measure cerebral blood flow, physiological activity is integrated over 
periods of approximately 45 minutes and 1 minute, respectively. Therefore, the options have been to use 
slow rTMS and stimulate throughout the period of measurement or to have the measurements encompass 
substantial periods of rest between fast rTMS trains. Additional problems have concerned the interference 
produced by TMS with image acquisition. Thus, combined TMS and imaging studies were first done with 
radiotracers that could be injected outside the camera (positron emission tomography done with 
fluorodeoxyglucose  and perfusion single-photon emission computed tomography ). More 
recent work has interleaved TMS with positron emission tomography or blood oxygen level-
dependent functional MRI. 

15

[21,121,122] [123-125]

[119,120,126]

[127-129]

A major hypothesis in the TMS field has been that fast rTMS results in excitatory physiological changes, 
while slow rTMS has inhibitory effects. To date, imaging studies have yielded inconsistent results regarding 
this proposition. In fact, some slow rTMS imaging studies over motor  or prefrontal cortex  ( ) 
have found decreased local and remote brain activity, while others have found increases.  Some 
imaging studies of fast rTMS have found increased perfusion,  but not all.  Recently, with the 
interleaved TMS and functional MRI technique, researchers compared slow TMS-induced finger movement 
with voluntary movements that mimicked TMS. They found that the changes accompanying slow rTMS 
were much like those produced by voluntary movement.  Ultimately, TMS combined with functional 
MRI may allow for precise positioning and focusing of the TMS coil, with exact information obtained on the 
magnetic field produced, as well as the TMS-induced brain alterations in physiology and biochemistry. This 
area is advancing rapidly.

[121] [122] Figure 3

[126,129]

[119] [30,120,123]

[130]
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Figure 3. Combining transcranial magnetic stimulation (TMS) with functional imaging reveals 
TMS neurophysiological effects. Four transverse positron emission tomography images 
from Kimbrell et al.  The nose is at the top of the image, and the right image side is the 
left side of the brain. These are statistical difference images from 8 adults who had TMS 
applied at 1 Hz over the left prefrontal cortex (arrow, D) during one scan, and then sham 
during another. Prefrontal TMS at 1 Hz reduced regional brain activity (blue) locally and in 
remote areas such as the insula (C) and orbitofrontal cortex (A and B). Although TMS with 
current technology only directly effects superficial cortex, remote transsynaptic effects also 
occur.

[122]

SAFETY

The safety issues involving TMS can be divided into immediate, short-term (hours to days following 
TMS), and long-term (weeks to months). [10]

Transcranial magnetic stimulation is not pleasant, and stimulation at higher intensities and frequencies is 
generally more painful. The pain experienced during rTMS is likely related to the repetitive stimulation of 
peripheral facial and scalp muscles, resulting in muscle tension headaches in a proportion of subjects 
(approximately 5%-20% depending on the study). These headaches respond to treatment with 
acetaminophen or aspirin. Magnetic stimulation also produces a high-frequency noise artifact that can cause 
short-term changes in hearing threshold. This is avoided when subjects and investigators wear earplugs. [131]

The most critical immediate safety concern is that rTMS has resulted in seizures. The number of people 
who have received TMS or rTMS is unknown, but is likely to be several thousand worldwide. To date, 
seizures during rTMS are known to have occurred in 7 individuals, including 6 normal volunteers. 
The TMS-induced seizures were self-limiting, and did not seem to have permanent sequelae. The risk of 
seizure induction is related to the parameters of stimulation, and no seizures have been reported with single-
pulse TMS or rTMS delivered at a slow frequency (< or= to 1 Hz). There is a growing understanding of the 
rTMS parameter combinations (magnetic intensity, pulse frequency, train duration, and intertrain interval) 
that result in spread of excitation, heralding impending seizure.  Even if therapeutic benefits are 
convincingly shown, the seizure risk may limit the widespread and loosely supervised use of rTMS. In part 
for this reason, the therapeutic potential of slow-frequency (< or= to 1 Hz) deserves particular attention.

[132-134]

[10,133]

With one exception,  examination results of neuropathological specimens in animals exposed to 
high-intensity rTMS have been normal.  The exceptional study found that rTMS resulted in 
microvacuolar lesions in the neuropil of cortical layers III and IV in rats. This effect was likely artifactual, 
resulting from mechanical injury due to stimulation-induced head movement. Gates et al  performed 
histological examinations of the resected temporal lobes of 2 patients with epilepsy who preoperatively 
received approximately 2000 stimulations over this tissue. Lesions attributable to TMS were not found. 
Magnetic resonance imaging scans done before and after 2 weeks of rTMS in 30 depressed patients did not 
show change.

[135,136]

[137-142]

[143]

[143]

[144]

Both TMS and rTMS can disrupt cognition during the period of stimulation. However, the safety 
concerns are about alterations in cognitive function beyond the period of stimulation. The limited investigation 
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of short-term neuropsychological effects of TMS has not demonstrated significant changes.  Little 
information is available about long-term effects. The technique has been in use for more than a decade 
without reports of long-term adverse consequences. The rate of cancer is not increased in individuals with 
prolonged exposure to high-intensity magnetic fields, such as MRI technicians.  However, TMS involves 
extremely brief, focal exposure to high-intensity magnetic fields and thus safety information from MRI 
technicians, or even people who live near power lines (lengthy exposure to low-intensity magnetic fields) 
may not be germane. 

[39]

[145]

[146]

New pharmacological agents undergo extensive examination of safety in animals and normal volunteers 
before testing efficacy in clinical trials.  To some extent, this scenario has been reversed with rTMS. 
Controlled trials across a variety of neuropsychiatric conditions are underway, yet safety information is 
limited. Reassuringly, single-pulse and other TMS measures of cortical excitability are believed to be devoid 
of significant safety concerns. However, rTMS has shown potential to ameliorate neuropsychiatric 
symptoms. The potential for adverse cognitive effects must be considered precisely because it is 
hypothesized that rTMS is a sufficiently powerful modulator of regional functional activity to have therapeutic 
properties. More comprehensive neuropsychological evaluations of the short- and long-term effects of 
rTMS are needed.

[147]

At present, seizure elicitation is the major safety issue linked to rTMS. To avoid seizures, the magnetic 
intensity delivered with rTMS is adjusted for each individual relative to their motor threshold.  This 
dose-adjustment method rests on the unproven assumption that the seizure risk of rTMS over diverse brain 
areas is predicted by the threshold for a single TMS pulse to depolarize pyramidal neurons in the motor 
strip. More needs to be learned about the contribution of rTMS parameters to seizure induction, and 
validated methods should be established to minimize seizure risk. Much of this work could be conducted in 
animals. Alternatively, ECT presents the one situation in humans in which seizures are provoked for 
therapeutic purposes. A reliable method of seizure induction with TMS may have important advantages over 
traditional ECT by offering better control over the intensity and spatial distribution of current density in the 
brain.  Developing a TMS form of convulsive therapy is largely an issue of technological advances in 
stimulator output and coil design. Such a development may also foster better understanding of the safety of 
nonconvulsive uses of rTMS.

[10,133]

[148]

CONCLUSIONS

During the next several years, it will become clearer whether rTMS has a role in the treatment of 
psychiatric disorders. To date, trials in depression have focused on demonstrating antidepressant properties 
and have not demonstrated clinical utility. We need to know a good deal more about the patients who 
benefit from rTMS, the optimal form of treatment delivery, the magnitude and persistence of therapeutic 
effects, the capability of sustaining improvement with rTMS or other modalities, and the risks of treatment. It 
is still too early to know whether we are at the threshold of a new era in physical treatments and noninvasive 
regional brain modulation. Regardless of its potential therapeutic role, the capacity of rTMS to noninvasively 
and focally alter functional brain activity should lead to important advances in our understanding of brain-
behavior relationships and the pathophysiology of neuropsychiatric disorders.
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