Safety of TMS and Ethical Concerns

Lindsay Oberman
Berenson-Allen Center for Noninvasive Brain Stimulation
Beth Israel Deaconess Medical Center
Harvard Medical School

November, 2008
Plan

1. What are potential concerns?
2. Ethics.
3. Overview of adverse TMS effects.
4. Risk of seizure.
5. Safety parameters and guidelines
6. Other adverse effects (known & theoretical)
7. Contraindications
8. Management of the risks
Ethical considerations

6 principles of medical (research) ethics

- **Beneficence**: the investigator should act in the best interest of the patient
- **Non-maleficence**: “first, do not harm”
- **Autonomy**: the subject has the right to refuse or choose the intervention
- **Justice**: concerns the distribution of resources and equality in deciding who participates
- **Dignity**: the subject has the right to dignity
- **Truthfulness and honesty**: the subject should not be lied to, and deserves to know the truth about his/her treatment
Ethical considerations

- Potential benefit > risk of the intervention
- Informed consent:
 - who will participate in the study
 - what will happen during the study
 - why this study is being done
 - possible risks, side effects and discomforts
 - benefits / alternatives
 - confidentiality / personal and health information
 - disclosure of special interest of the hospital or the investigator
- Informed consent does not substitute an ethical practice
Potential adverse effects of rTMS

Known risks
- seizure
- pseudoseizure and syncope
- headache and neck pain
- effects on cognition
- effects on mood
- endocrine effects
- auditory effects
- burns from scalp electrodes
- psychiatric symptoms
- nausea

Theoretical risks
- histotoxicity
- kindling
- long-term potentiation
- long-term depression
- unknown

Wassermann 1998; Machii et al. 2005
Important parameters for safety

- **Frequency of stimulation** \((Hz)\)
- **Intensity** (% threshold/output)
- **Duration**: train/total \((seconds)\)
- **Intertrain interval** \((seconds)\)
- **Number of pulses**: train/total

E.g. depression protocol (20Hz)

<table>
<thead>
<tr>
<th>Train 1</th>
<th>Intertrain Interval</th>
<th>Train 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 pulses</td>
<td>28 sec</td>
<td>40 pulses</td>
</tr>
<tr>
<td>2 sec</td>
<td></td>
<td>2 sec</td>
</tr>
</tbody>
</table>
Potential adverse effects of rTMS

Known risks
- seizure
- pseudoseizure and syncope
- headache and neck pain
- effects on cognition
- effects on mood
- transient effects on hormones
- transient auditory effects
- burns from scalp electrodes
- psychiatric symptoms
- nausea

Theoretical risks
- histotoxicity
- kindling
- long-term potentiation
- long-term depression
- unknown

Wassermann 1998; Machii et al. 2005
TMS-induced seizures

When applied in sufficiently high doses, high-frequency rTMS has proconvulsive potential in animals and humans.

TMS-induced seizures: mechanisms

EXCESSIVE ACTIVATION OF PYRAMIDAL CELLS
SPREAD OF EXCITATION TO NEIGHBORING NEURONS
OVERWHELMING OF INHIBITORY MECHANISMS

Daskalakis and Chen 2005
TMS-induced seizures in animals

In general, it is extremely difficult to induce seizures with TMS in animals.

Examples of proconvulsive effects:

Rodents

Chronic stimulation: 1 and 5 sec trains, stimulus intensity of 1.8 x Tm, every day for 30 days reduces latency of onset of PTZ-induced seizure (Jennum and Klitgaard 1996)

Primates: 40Hz 400% MT 4-5s; local anesthesia; only with custom device (induced voltage equal to that of electroconvulsive shock). (Lisanby et al 2001)
TMS-induced seizures in humans

• Seizure induction w/ single pulse TMS

Healthy subjects: No cases reported to date.

• Seizure induction w/ single pulse TMS

Patients: Approximately 20 cases reported.

• Seizure induction w/ repetitive TMS

Healthy subjects: Approximately 6 cases when parameters are outside of safety guidelines. 1 case when parameters are within safety guidelines.

• Seizure induction w/ repetitive TMS

Patients: At least 3 cases.
Safety guidelines

Safe train durations / number of pulses for single trains of rTMS in healthy subjects

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>rTMS intensity (% of motor threshold)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>>270/270(^{c})</td>
</tr>
<tr>
<td>5</td>
<td>10/50(^{c})</td>
</tr>
<tr>
<td>10</td>
<td>5/50(^{c})</td>
</tr>
<tr>
<td>20</td>
<td>1.5/30</td>
</tr>
<tr>
<td>25</td>
<td>1.0/25</td>
</tr>
</tbody>
</table>

The maximum safe train duration (s) is shown followed by the number of pulses. See also [Wassermann (1997)].

\(^{c}\)Based on [Chen et al. (1997a)].

\(^{d}\)Based on [Wassermann et al. (1996b)].

\(^{e}\)No spread of excitation or post-TMS EMG activity was observed at these train durations. Based on [Pascual-Leone et al. (1993)].
Safety guidelines: Tables

Safety recommendation for inter-train intervals for 10 trains of rTMS at less than 20Hz

<table>
<thead>
<tr>
<th>Inter-train interval (s)</th>
<th>Stimulus intensity (% of MT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Safe</td>
</tr>
<tr>
<td>5</td>
<td>Unsafe (3)</td>
</tr>
<tr>
<td>1</td>
<td>Unsafe(^a)</td>
</tr>
<tr>
<td>0.25</td>
<td>Unsafe(^a)</td>
</tr>
</tbody>
</table>

The minimum number of trains that caused spread of excitation or post-TMS EMG activity are indicated in the parentheses. The maximum duration/number of pulses for individual rTMS trains at each stimulus intensity should not exceed that listed in table. Stimulus parameters produced by reducing a set of parameters that is considered safe (reduction in stimulus intensity, train duration, or increase in inter-train interval) is also considered safe. rTMS at 25 Hz, 120% of MT (0.4 s duration) is unsafe at inter-train intervals of 1 s or less. The safety of longer inter-train intervals at 25 Hz has not been determined.

\(^a\)These stimulus parameters are considered unsafe because adverse events occurred with stimulation of lower intensity or longer inter-train interval, but no adverse event was observed with these parameters.
TMS-induced seizures: Summary

- Within safety guidelines, in healthy subjects, risk of seizure is very low but still present. (<1 / 1,000 overall estimate; Machii et al 2006)

- Risk of seizure increases when rTMS is outside of safety parameters.

- Risk of seizure may be higher for patients, due to interaction of disease (e.g. stroke, Epilepsy) and TMS.

 - TMS-induced seizure ≠ Epilepsy

 - Balance of risk/benefit
Other adverse effects
Headache & Neck Pain

- most common adverse effects reported
 - headache ≈ 23%
 - neck pain ≈ 12%

- responds well to analgesics
- contraindication for subjects susceptible to headaches
- shorter blocks; breaks ~ every 5 min

Machii et al., 2006
Neuropsychological & motor effects

- overall no evidence of long term adverse effect on cognitive, perceptual or motor functions (but not sufficiently studied)

- some studies observed a trend towards improved working memory and motor reaction time

Effects on mood in healthy subjects

- not common in healthy participants - but observed for RPFC & LPFC
- healthy participants (10Hz, 110% MT, 25 - 5sec trains) changes in self-rating
 - L PFC: ↓ happiness, ↑ sadness
- depressed patients: high frequency rTMS to LPFC might improve mood

Pascual-Leone et al. 1996; George et al. 1996
Effects on hearing

- no permanent hearing loss reported in humans

- rare, but reported:
 - transient rise in auditory threshold
 - tinnitus
 - mild high-frequency hearing loss after several weeks of rTMS

 ✓ ear plugs recommended

Pascual-Leone et al. 1992; 1993; Loo et al. 2001; Boutros et al. 2002; Anderson et al. 2006
Endocrine effects

- no changes in:
 - prolactin
 - adrenocorticotropic (ACTH)
 - lutenizing (LH)
 - follicle-stimulating hormones (FSH)

- change reported in:
 - increase in thyroid-stimulating hormone (TSH)
 - acute increase in cortisol (stress?)

- reported effects on neurotransmitters:
 - release of dopamine (caudate nucleus)
 - increase in glutamate/glutamine
Burns from scalp electrodes

risk of heating and skin burns with the use of rTMS near metal surface EEG electrodes

☑ the use of MRI compatible electrodes is recommended

Roth et al. 1992
Psychotic symptoms

- psychotic symptoms induced by rTMS to the dorsolateral prefrontal cortex in patients with depression (4 cases)

Garcia-Toro 1999; Dolberg et al. 2001; Zwanzger et al. 2002
Theoretical risks

Effects that have never been reported in humans with TMS, but remain safety considerations.

- histotoxicity: tissue damage
- kindling
- long-term potentiation
- long-term depression
- effects of magnetic field
Theoretical risks: Histotoxicity

- Evidence from animals: surface electrode stimulation & TMS
- Evidence from TMS in humans

“The chance of excitotoxicity with rTMS in humans seems to be remote.” (Wassermann, 1998)
Theoretical risks: kindling & epileptogenesis
- electrical stimulation can induce kindling in animals
 - conditions necessary for kindling are not met by current TMS protocols
 - no kindling in humans receiving DCS or ECT

Devinky and Duchowny, 1983; Goldensohn, 1984

Theoretical risks: LTP or LTD
electrical stimulation can induce LTP or LTD of synaptic transmission in animals

Theoretical risk: magnetic fields

Properties of magnetic field produced by TMS:
- strength in $1.5T$ to $2T$ range
- falls of rapidly with distance from the coil
- rapidly changing

No proven health risks of electromagnetic fields
Contraindications (1)

- intracranial metallic or magnetic pieces
 transient magnetic field can displace or heat objects

- pacemakers and other implantable medical devices
 induced pulse may disturb electronic circuitry

- history of seizures or epilepsy
 including history in a first degree relative

- medications (e.g. TCAs, neuroleptic agents)
 reduction in seizure threshold

- subjects who are pregnant
 test those of childbearing potential
Contraindications (2)

- history of serious head trauma
- history of substance abuse
- stroke
- brain surgery

- other medical/neurologic conditions either associated with epilepsy or in whom a seizure would be particularly hazardous
TMS Adult Safety Screen

<table>
<thead>
<tr>
<th>Have you ever:</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Had an adverse reaction to TMS?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Had a seizure?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Had an electroencephalogram?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Had a stroke?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Had a serious head injury (include neurosurgery)?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Do you have any metal in your head (outside the mouth) such as shrapnel, surgical clips, or fragments from welding or metalwork?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Do you have any implanted devices such as cardiac pacemakers, medical pumps, or intracardiac lines?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Do you suffer from frequent or severe headaches?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Have you ever had any other brain-related condition?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Have you ever had any illness that caused brain injury?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Are you taking any medications?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- If you are a woman of childbearing age, are you sexually active, and if so, are you not using a reliable method of birth control?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Does anyone in your family have epilepsy?</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>- Do you need further explanation of TMS and its associated risks?</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

If you answered **yes** to any of the above, please provide details:

☑ Adapted from Keel et al. 2001
Managing the risks

TMS should be administered:

- under the supervision of an appropriate trained and licensed physician
- by a trained first responder to render appropriate care in the event of seizure
- in a medical setting with appropriate emergency facilities

Belmaker et al. 2003
Monitoring: during TMS

Subjects should be monitored to:

- detect potential epileptogenic markers (after-discharges and spread of excitation)

- reconstruct the events preceding the seizure

- EEG
- EMG
- visual monitoring
Monitoring: after TMS

Neuropsychological monitoring to assess short and long-term effects on cognitive function

- Beck scores for patients with depression at different time period
- Cognitive Assessment
TMS acute side effects questionnaire

<table>
<thead>
<tr>
<th>symptoms</th>
<th>severity</th>
<th>relationship</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>headache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neck pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seizure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalp burns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hearing impairment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impaired cognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trouble concentrating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acute mood change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other (specify)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Severity ratings: 1- absent, 2- mild, 3- moderate, 4- severe
Relationship ratings: 1- none, 2- remote, 3- possible, 4- probable, 5- definite
Our lab policies

Staff
- specially trained in recognition and treatment of seizures
- a neurologist is on location during all TMS sessions

Equipment
- the TMS equipment is regularly checked
- a fully equipped “crash cart” with emergency medical equipment is in lab and regularly checked

Supplies
- include IV access equipment, oxygen, and emergency medications for treatment of a seizure
- ear plugs, acetaminophen