Non-Invasive Brain Stimulation and Behavioral Therapy

Dylan J. Edwards PhD
Director, Moss Rehabilitation Research Institute, Philadelphia
Professor of Neuroscience, ECU Australia

How does repetitive behavior affect motor cortex?
How does NIBS affect motor cortex?

- **Simple repetitive finger movements increase excitability.**
- **Motor map changes with skilled practice.**

Physiology of TMS

Di Lazzaro et al. (1998)

- Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability.

Ziemann et al., 1998

- Periodicity ~ 1.5 ms

“An excited neuron tends to decrease its discharge to inactive neurons, and increase this discharge to any active neuron, and therefore to form a route to it, whether there are intervening neurons between the two or not. With repetition, this tendency is prepotent in the formation of neural routes”

(Hebb, 1932, p.13).

Donald Hebb

The Organisation of Behaviour: A Neuropsychological Theory. D.O. Hebb (1949)
Rate-dependent TMS protocols

- **Excitatory**
 - **Repetitive**
 - High-frequency (~10Hz)
 - **Intermittent**
 - Low-frequency (~1Hz)
 - **Continuous**

- **Inhibitory**

Thetaburst

Long-term potentiation

Long-term depression

Clinical application - rTMS, Stroke Motor Recovery
Functional Improvements
- sRT/eRT
- Pinch force acceleration
- Fingers/thumb AROM
- Movement accuracy
- Purdue Pegboard
- JTT

TMS correlates
- Resting MT
- Transcallosal Inhibition
- MEP Amplitude

How does combined intervention affect motor cortex?

Improved corticomotor output from ipsilesional M1 & improved motor behaviour

How does combined intervention affect motor cortex?

Functional Improvements
- sRT/eRT
- Pinch force acceleration
- Fingers/thumb AROM
- Movement accuracy
- Purdue Pegboard
- JTT

TMS correlates
- Resting MT
- Transcallosal Inhibition
- MEP Amplitude

Improvised corticomotor output from ipsilesional M1 & improved motor behaviour

Altering cortical excitability before repetitive synaptic activity

- 1mA 10mins tDCS
- rTMS at 5Hz 100stim train at AMT – decreases SICI, but not lasting change in excitability as tested by single pulse TMS
- Result: after effects of tDCS can generate opposite effects of rTMS or conversely can alter the after effects of tDCS

Motor systems example

If...

Motor Training = improvement in function ‘X’

and...

NIBS = improvement in function ‘X’

does...

Motor Training + NIBS = improvement in function 2X, X^2, or 0???
Anodal tDCS combined with robotic motor training

<table>
<thead>
<tr>
<th>Condition</th>
<th>Unconditioned</th>
<th>Conditioned</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-tDCS</td>
<td>1.5</td>
<td>2.0</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Post-tDCS</td>
<td>2.5</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Post-Robot</td>
<td>3.5</td>
<td>4.0</td>
<td></td>
</tr>
</tbody>
</table>

Robotics for assessment of performance kinematics

Upper limb robotics at Burke-Cornell, New York

Edwards PI: R01 HD069776

Robotics with brain stimulation in patients with motor dysfunction

TMS

<table>
<thead>
<tr>
<th>Method</th>
<th>Author</th>
<th>Priming Method</th>
<th>Protocol</th>
<th>Effect</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>rTMS</td>
<td>lyer</td>
<td>rTMS</td>
<td>rTMS</td>
<td>increased inhibitory effect</td>
<td>>60 min</td>
</tr>
<tr>
<td></td>
<td>Daskalakis</td>
<td>rTMS</td>
<td>rTMS</td>
<td>no change</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>Siebner</td>
<td>TDCS</td>
<td>rTMS</td>
<td>no change</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>Siebner</td>
<td>TDCS</td>
<td>rTMS</td>
<td>reversed results in MEP</td>
<td>>30 min</td>
</tr>
<tr>
<td>TBS</td>
<td>lezzi</td>
<td>voluntary (finger abduction)</td>
<td>cTBS</td>
<td>reversed results in MEP</td>
<td>>30 min</td>
</tr>
<tr>
<td></td>
<td>lezzi</td>
<td>voluntary (finger abduction)</td>
<td>rTBS</td>
<td>reversed results in MEP</td>
<td>>30 min</td>
</tr>
<tr>
<td>PAS</td>
<td>Müller</td>
<td>N20-5ms</td>
<td>N20-2ms</td>
<td>priming produced increase in MEP</td>
<td>>30 min</td>
</tr>
<tr>
<td></td>
<td>Müller</td>
<td>N20-2ms</td>
<td>N20-2ms</td>
<td>change</td>
<td>>30 min</td>
</tr>
<tr>
<td></td>
<td>Zienman</td>
<td>voluntary*</td>
<td>N20-5</td>
<td>enhanced inhibition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zienman</td>
<td>voluntary*</td>
<td>N20-2ms</td>
<td>no change</td>
<td></td>
</tr>
</tbody>
</table>

* presumed excitation

Inhibitory*

Excitatory*

Nexstim NICHE Trial 2014-16

Clinicaltrials.gov # NCT02089464

PI: Richard Harvey RIC

Preliminary data for Nexstim NICHE Trial

Repetitive Transcranial Magnetic Stimulation (rTMS)

- Aiming tool: centering, rotation, titling
- Electrical field display
- Parameters:
 - 900 pulses
 - 1 Hz rTMS (inhibitory) to M1 of non-lesioned hemisphere
 - 110% of motor threshold for Extensor Digitorum Communis (m.EDC)

Patient set up

Repetitive Transcranial Magnetic Stimulation (rTMS)

Patient Goals:
- Cut food with knife & fork
- Cook
- Reach for items above shoulder height
- Fasten clothing (buttons, zippers, laces)
- Hold grandchild
- Hold tools in affected hand
- Driving
- Golf

Collaborative process between therapist and patient

Nexstim NICHE Trial 2014-16

Improvement ≥ 5 UEFM points 6 mths post (Primary)

Experimental group:
- 67% (95% CI, 58%–75%) n=117

Control Group:
- 65% (95% CI, 52%–76%) n=52

P = 0.76

Mean change UEFM points 6 mths

Experimental: 8.2 ±7pts

Control: 8.5 ±8pts

P = 0.87

Harvey et al, 2018 Stroke
How does unaffected M1 excitability relate to hemiparesis?

VLSM in 3-12 month Post-Stroke (hemiparesis)

Hot colour = maximum overlap for unaffected hemisphere hyper-excitability

n=103

Webster et al (2006)

Transcranial Magnetic Stimulation as a Complementary Treatment for Aphasia

Other cortical areas?

How is the network disrupted?

Is NIBS useful?

Can it be effectively combined with SL therapy?

R hem1 Hz rTMS + SL therapy improves language recovery and favors L hem language network activation.

Parameters:
- 900 pulses
- 1 Hz rTMS (inhibitory) to pars triangularis of non-lesioned hemisphere
- Motor threshold determination with First dorsal interosseus muscle
- Real - 90% RMT
- Sham – 10% RMT

Patient set up

Parameters:
- 600 pulses
- 1 Hz rTMS (inhibitory) to pars triangularis of non-lesioned hemisphere
- Motor threshold determination with First dorsal interosseus muscle
- Real - 90% RMT
- Sham – 10% RMT

Distribution of Literature

- rTMS & Speech 23%
- TMS & Cognitive training 4%
- rTMS & Motor 73%

rTMS combined with behavioral therapy?

TMS for Alzheimer’s disease - Neuronix

- Combines TMS to enhance plasticity with cognitive exercises
- TMS to a brain network followed by cognitive tasks that activate that network
- Daily sessions lasting 1 hour for 6 weeks

TMS for Alzheimer’s disease - Neuronix

- Combines TMS to enhance plasticity with cognitive exercises
- TMS to a brain network followed by cognitive tasks that activate that network
- Daily sessions lasting 1 hour for 6 weeks

Subject 1

Berenson-Allen Center for Noninvasive Brain Stimulation

Beth Israel Deaconess Medical Center

Harvard Medical School

NICETM Neuronix Ltd.

NICETM System Neuronix Ltd., Israel

Sereen N Brown Center for Noninvasive Brain Stimulation

Beth Israel Deaconess Medical Center

Harvard Medical School

TMS for Alzheimer’s disease - Neuronix

- Combines TMS to enhance plasticity with cognitive exercises
- TMS to a brain network followed by cognitive tasks that activate that network
- Daily sessions lasting 1 hour for 6 weeks

TMS for Alzheimer’s disease - Neuronix

- Combines TMS to enhance plasticity with cognitive exercises
- TMS to a brain network followed by cognitive tasks that activate that network
- Daily sessions lasting 1 hour for 6 weeks

Subject 1

BEM

Brain stimulation parameters

Parameters:
- 600 pulses
- 1 Hz rTMS (inhibitory) to pars triangularis of non-lesioned hemisphere
- Motor threshold determination with First dorsal interosseus muscle
- Real - 90% RMT
- Sham – 10% RMT

Distribution of Literature

- rTMS & Speech 23%
- TMS & Cognitive training 4%
- rTMS & Motor 73%

rTMS combined with behavioral therapy?

TMS for Alzheimer’s disease - Neuronix

- Combines TMS to enhance plasticity with cognitive exercises
- TMS to a brain network followed by cognitive tasks that activate that network
- Daily sessions lasting 1 hour for 6 weeks

TMS for Alzheimer’s disease - Neuronix

- Combines TMS to enhance plasticity with cognitive exercises
- TMS to a brain network followed by cognitive tasks that activate that network
- Daily sessions lasting 1 hour for 6 weeks
TMS for Alzheimer’s disease - Neuronix

<table>
<thead>
<tr>
<th>Brain Region</th>
<th>Left IFG</th>
<th>Left STG</th>
<th>R DLPFC</th>
<th>L DLPFC</th>
<th>R IPL</th>
<th>L IPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Task</td>
<td>Sentence similarities, differentiates right/wrong sentences</td>
<td>Differentiates words/pseudo words, associates pictures to situations</td>
<td>Action naming, word recall</td>
<td>Remember color/location of rectangle, word recall</td>
<td>Identify red/white rectangles</td>
<td>Identify letters in a cluster of letters</td>
</tr>
</tbody>
</table>

Abbreviations: L IFG: left inferior frontal gyrus; L STG: left superior temporal gyrus; R and L DLPFC: right and left dorsolateral prefrontal cortex; R and L IPL: right and left inferior parietal lobule.

Results of Initial NeuroAD trials

- Neuronix has completed a phase III trial of TMS + Cognitive therapy in mild-moderate AD
- Prospective, double-blind trial of 130 patients
- Initial results presented at meetings showing efficacy in the mild AD patients but not in overall group

Donse et al. (2018)

Conceptual Guide for Timing of rTMS and Behavioral Therapy

<table>
<thead>
<tr>
<th>Concurrent</th>
<th>rTMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interleaved</th>
<th>rTMS</th>
<th>BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>rTMS</td>
<td>BT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequential</th>
<th>rTMS</th>
<th>BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>rTMS</td>
<td>BT</td>
<td></td>
</tr>
</tbody>
</table>

Donse et al. (2018)
Conclusions

- Brain state influences the response to neuromodulation
- Homeostatic mechanisms may oppose further enhancement when interventions are combined
- Combined neuromodulation & behavioral therapy can be effective
- The optimal circumstances require further investigation