TMS and Imaging

Joan A. Camprodon, MD MPH PhD
Chief, Division of Neuropsychiatry
Laboratory for Neuropsychiatry and Neuromodulation
Transcranial Magnetic Stimulation (TMS) clinical service
Massachusetts General Hospital, Harvard Medical School

Disclosures
- Editorial Royalties: Springer.
- Scientific Advisory Board: Hyka, Flow Neuroscience
- Consultant: Mifu Technologies, Neuroelectrics, LivaNova

Neuropsychiatry: Disorders of Connectivity

Functional Neuroimaging Methods

Electrophysiologic: EEG/MEG

Metabolic and/or Vascular
- PET/SPECT
- fMRI
- NIRS

2 Axis of Resolution... or 3?

3rd Axis: Causality

Epiphenomenon!!
Brain Stimulation - Neuromodulation

- **Invasive**
 - Deep Brain Stimulation (DBS)
 - Vagal Nerve Stimulation (VNS)
 - Epidural Stimulation (ES)
- **Convulsive**
 - Electroconvulsive Therapy (ECT)
 - Magnetic Seizure Therapy (MST)
- **Noninvasive**
 - Transcranial Magnetic Stimulation (TMS)
 - Transcranial Direct Current Stimulation (tDCS)

Neuromodulation: Need to know...

- The circuit(s)
- The target(s)
- Direction of modulation

Transcranial Magnetic Stimulation

- 1831 Faraday's Electromagnetic Induction
- Anthony Barker 1984

TMS Applications

- Measure brain activity
- Change brain activity

- Clinical: Diagnostics (neural system disorders) (pre-surgical mapping)
- Clinical: Therapeutics (circuit-based pathologies)
 - MDD
 - Acute Migraines
 - OCD
 - Smoking Cessation

TMS limitations

- Where to stimulate?
- What does TMS do to the Brain?
 - Only behavioral measures? Beyond the black box approach.
Functional Neuroimaging vs. TMS

<table>
<thead>
<tr>
<th>Neuroimaging</th>
<th>TMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlational (cannot establish causality)</td>
<td>Interventional (and thus causal)</td>
</tr>
<tr>
<td>Measures whole-brain activity</td>
<td>Measures behavioral outcomes</td>
</tr>
</tbody>
</table>

Why Combine TMS and Neuroimaging?

- Plan, guide and document localization of TMS
- Develop circuit predictor biomarkers
- Measure neurobiological effects of TMS, beyond cognitive and behavioral outcomes

TMS-fMRI vs PET/EEG

- Vs. TMS-PET
 - MRI: better spatio-temporal resolution
 - MRI: no need of radioligands (better potential for repeated measures)
 - PET: neurotransmitter dynamic or more complex biological process
- Vs. TMS-EEG
 - MRI: better spatial resolution
 - EEG: better temporal resolution
 - MRI: ability to measure subcortical structures with greater detail (anatomy)
 - EEG: diversity of physiological measures in frequency and time domain

Anatomy: Therapeutic Targets

- OCD Target: DMPFC/pre-SMA
- MDD Target: DLPFC
- Migraine Target: Occipital pole
- Smoking Cessation: VLPFC/Insula

Localization: Stereotactic Neuronavigation

- Task fMRI
- fNIRS
- fMRI
MDD Effectiveness: Naturalistic Studies

Carpenter et al. 2012
- 330 patient with MDD naïve to TMS
- Concurrent medications/therapy
- Response Rate: 41.5-58%
- Remission Rate: 20.5-37.1%

Group Level fcMRI Target: Prospective Trial

Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (TMB2D-C): a randomised non-inferiority trial

Individualized fcMRI-guided TMS

Individualized Targeting: Clinical Response

Why Consider TMS treatment for Depression?

fcMRI-guided Accelerated TBS for MDD

Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial
Accelerated TBS for MDD

Stanford Neurmodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial

- FDA cleared in 2022
- Interim Analysis: 30 patients (aim was 60)
- Cohen’s d > 0.8 → Study ended

Active:
- 62.0%, 70.9%, 62.4%, 57.8%, 52.5%

Sham:
- 14.3%, 20.6%, 10.4%, 10.9%, 11.1%

Why Combine TMS and Neuroimaging?

- Plan, guide and document localization of TMS
- Develop circuit predictor biomarkers
- Measure neurobiological effects of TMS, beyond cognitive and behavioral outcomes

Neuroimaging DURING TMS

Neuroimaging BEFORE TMS

Neuroimaging AFTER TMS

Individualized Targeting: Clinical Response

HAMD 17

Responders

Non-Responders

Remitters

- Responders: 50% (10/20)
- Non-Responders: 50% (10/20)
- Remitters: 50% (10/20)

Failed medications in current episode: 7.06 (range 5 - 12)

Node to Node effects

Target of Stimulation with SCC

Baseline Connectivity

Change in Connectivity

Target of Stimulation
Node to Network Effects

- **Visual**
- **Somatomotor**
- **Dorsal Attention**
- **Frontoparietal**
- **Limbic**

SCC with Default Mode Network

Summary

- **Clinical Outcomes**
 - Individualized fcMRI-guided TMS leads to 50% response and remissions rate in highly treatment-resistant patients.
 - Much improved remission rate than standard TMS: seems to justify individualized vs. group target.
 - All or nothing distribution: what are we missing in ½ patients?

- **Node to node (DLPFC to SGC) dynamics**
 - Weak baseline connectivity predicts greater response
 - Clinical response explained by strengthening of the anticorrelation

- **Node to Network dynamics**
 - Connectivity from the DLPFC target does not explain or predict clinical response
 - SGC connectivity to DMN predicts and explains response (distant effects)
 - Weak baseline positive correlations predict good response
 - Response is associated with strengthening of positive connectivity
 - Distal effects more important than local changes in the DLPFC target (network mechanism)